test_pipeline_chroma.py 5.89 KB
Newer Older
Edna's avatar
Edna committed
1
2
3
4
5
6
7
8
9
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import AutoencoderKL, ChromaPipeline, ChromaTransformer2DModel, FlowMatchEulerDiscreteScheduler
from diffusers.utils.testing_utils import torch_device

10
from ..test_pipelines_common import FluxIPAdapterTesterMixin, PipelineTesterMixin, check_qkv_fused_layers_exist
Edna's avatar
Edna committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123


class ChromaPipelineFastTests(
    unittest.TestCase,
    PipelineTesterMixin,
    FluxIPAdapterTesterMixin,
):
    pipeline_class = ChromaPipeline
    params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds"])
    batch_params = frozenset(["prompt"])

    # there is no xformers processor for Flux
    test_xformers_attention = False
    test_layerwise_casting = True
    test_group_offloading = True

    def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1):
        torch.manual_seed(0)
        transformer = ChromaTransformer2DModel(
            patch_size=1,
            in_channels=4,
            num_layers=num_layers,
            num_single_layers=num_single_layers,
            attention_head_dim=16,
            num_attention_heads=2,
            joint_attention_dim=32,
            axes_dims_rope=[4, 4, 8],
            approximator_hidden_dim=32,
            approximator_layers=1,
            approximator_num_channels=16,
        )

        torch.manual_seed(0)
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=1,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "transformer": transformer,
            "vae": vae,
            "image_encoder": None,
            "feature_extractor": None,
        }

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "negative_prompt": "bad, ugly",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 8,
            "width": 8,
            "max_sequence_length": 48,
            "output_type": "np",
        }
        return inputs

    def test_chroma_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = "a different prompt"
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different here
        # For some reasons, they don't show large differences
        assert max_diff > 1e-6

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        original_image_slice = image[0, -3:, -3:, -1]

        # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
        # to the pipeline level.
        pipe.transformer.fuse_qkv_projections()
124
125
126
        self.assertTrue(
            check_qkv_fused_layers_exist(pipe.transformer, ["to_qkv"]),
            ("Something wrong with the fused attention layers. Expected all the attention projections to be fused."),
Edna's avatar
Edna committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
        )

        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_fused = image[0, -3:, -3:, -1]

        pipe.transformer.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        image = pipe(**inputs).images
        image_slice_disabled = image[0, -3:, -3:, -1]

        assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), (
            "Fusion of QKV projections shouldn't affect the outputs."
        )
        assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), (
            "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        )
        assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Original outputs should match when fused QKV projections are disabled."
        )

    def test_chroma_image_output_shape(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        height_width_pairs = [(32, 32), (72, 57)]
        for height, width in height_width_pairs:
            expected_height = height - height % (pipe.vae_scale_factor * 2)
            expected_width = width - width % (pipe.vae_scale_factor * 2)

            inputs.update({"height": height, "width": width})
            image = pipe(**inputs).images[0]
            output_height, output_width, _ = image.shape
            assert (output_height, output_width) == (expected_height, expected_width)