transformer_flux.py 7.79 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import nullcontext

from ..models.embeddings import (
    ImageProjection,
    MultiIPAdapterImageProjection,
)
20
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
21
from ..utils import is_accelerate_available, is_torch_version, logging
22
from ..utils.torch_utils import empty_device_cache
hlky's avatar
hlky committed
23
24
25
26
27
28
29
30
31
32
33
34
35


if is_accelerate_available():
    pass

logger = logging.get_logger(__name__)


class FluxTransformer2DLoadersMixin:
    """
    Load layers into a [`FluxTransformer2DModel`].
    """

36
    def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=_LOW_CPU_MEM_USAGE_DEFAULT):
hlky's avatar
hlky committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        updated_state_dict = {}
        image_projection = None
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext

        if "proj.weight" in state_dict:
            # IP-Adapter
            num_image_text_embeds = 4
            if state_dict["proj.weight"].shape[0] == 65536:
                num_image_text_embeds = 16
            clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
            cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds

            with init_context():
                image_projection = ImageProjection(
                    cross_attention_dim=cross_attention_dim,
                    image_embed_dim=clip_embeddings_dim,
                    num_image_text_embeds=num_image_text_embeds,
                )

            for key, value in state_dict.items():
                diffusers_name = key.replace("proj", "image_embeds")
                updated_state_dict[diffusers_name] = value

        if not low_cpu_mem_usage:
            image_projection.load_state_dict(updated_state_dict, strict=True)
        else:
82
83
            device_map = {"": self.device}
            load_model_dict_into_meta(image_projection, updated_state_dict, device_map=device_map, dtype=self.dtype)
84
            empty_device_cache()
hlky's avatar
hlky committed
85
86
87

        return image_projection

88
    def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=_LOW_CPU_MEM_USAGE_DEFAULT):
89
        from ..models.transformers.transformer_flux import FluxIPAdapterAttnProcessor
hlky's avatar
hlky committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

        if low_cpu_mem_usage:
            if is_accelerate_available():
                from accelerate import init_empty_weights

            else:
                low_cpu_mem_usage = False
                logger.warning(
                    "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                    " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                    " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                    " install accelerate\n```\n."
                )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        # set ip-adapter cross-attention processors & load state_dict
        attn_procs = {}
        key_id = 0
        init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
        for name in self.attn_processors.keys():
            if name.startswith("single_transformer_blocks"):
                attn_processor_class = self.attn_processors[name].__class__
                attn_procs[name] = attn_processor_class()
            else:
                cross_attention_dim = self.config.joint_attention_dim
                hidden_size = self.inner_dim
121
                attn_processor_class = FluxIPAdapterAttnProcessor
hlky's avatar
hlky committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
                num_image_text_embeds = []
                for state_dict in state_dicts:
                    if "proj.weight" in state_dict["image_proj"]:
                        num_image_text_embed = 4
                        if state_dict["image_proj"]["proj.weight"].shape[0] == 65536:
                            num_image_text_embed = 16
                        # IP-Adapter
                        num_image_text_embeds += [num_image_text_embed]

                with init_context():
                    attn_procs[name] = attn_processor_class(
                        hidden_size=hidden_size,
                        cross_attention_dim=cross_attention_dim,
                        scale=1.0,
                        num_tokens=num_image_text_embeds,
                        dtype=self.dtype,
                        device=self.device,
                    )

                value_dict = {}
                for i, state_dict in enumerate(state_dicts):
                    value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
                    value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
                    value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]})
                    value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]})

                if not low_cpu_mem_usage:
                    attn_procs[name].load_state_dict(value_dict)
                else:
151
                    device_map = {"": self.device}
hlky's avatar
hlky committed
152
                    dtype = self.dtype
153
                    load_model_dict_into_meta(attn_procs[name], value_dict, device_map=device_map, dtype=dtype)
hlky's avatar
hlky committed
154
155
156

                key_id += 1

157
158
        empty_device_cache()

hlky's avatar
hlky committed
159
160
        return attn_procs

161
    def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=_LOW_CPU_MEM_USAGE_DEFAULT):
hlky's avatar
hlky committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        if not isinstance(state_dicts, list):
            state_dicts = [state_dicts]

        self.encoder_hid_proj = None

        attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
        self.set_attn_processor(attn_procs)

        image_projection_layers = []
        for state_dict in state_dicts:
            image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
                state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
            )
            image_projection_layers.append(image_projection_layer)

        self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
        self.config.encoder_hid_dim_type = "ip_image_proj"