test_wan.py 4.99 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 The HuggingFace Team.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import torch
from transformers import AutoTokenizer, T5EncoderModel

from diffusers import AutoencoderKLWan, FlowMatchEulerDiscreteScheduler, WanPipeline, WanTransformer3DModel
from diffusers.utils.testing_utils import (
23
    backend_empty_cache,
24
25
26
    enable_full_determinism,
    require_torch_accelerator,
    slow,
27
    torch_device,
28
29
30
)

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
31
from ..test_pipelines_common import PipelineTesterMixin
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127


enable_full_determinism()


class WanPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = WanPipeline
    params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
    image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
        ]
    )
    test_xformers_attention = False
    supports_dduf = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        vae = AutoencoderKLWan(
            base_dim=3,
            z_dim=16,
            dim_mult=[1, 1, 1, 1],
            num_res_blocks=1,
            temperal_downsample=[False, True, True],
        )

        torch.manual_seed(0)
        # TODO: impl FlowDPMSolverMultistepScheduler
        scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
        text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        transformer = WanTransformer3DModel(
            patch_size=(1, 2, 2),
            num_attention_heads=2,
            attention_head_dim=12,
            in_channels=16,
            out_channels=16,
            text_dim=32,
            freq_dim=256,
            ffn_dim=32,
            num_layers=2,
            cross_attn_norm=True,
            qk_norm="rms_norm_across_heads",
            rope_max_seq_len=32,
        )

        components = {
            "transformer": transformer,
            "vae": vae,
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "dance monkey",
            "negative_prompt": "negative",  # TODO
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "height": 16,
            "width": 16,
            "num_frames": 9,
            "max_sequence_length": 16,
            "output_type": "pt",
        }
        return inputs

    def test_inference(self):
        device = "cpu"

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        video = pipe(**inputs).frames
        generated_video = video[0]
        self.assertEqual(generated_video.shape, (9, 3, 16, 16))
128
129
130
131
132
133
134
135

        # fmt: off
        expected_slice = torch.tensor([0.4525, 0.452, 0.4485, 0.4534, 0.4524, 0.4529, 0.454, 0.453, 0.5127, 0.5326, 0.5204, 0.5253, 0.5439, 0.5424, 0.5133, 0.5078])
        # fmt: on

        generated_slice = generated_video.flatten()
        generated_slice = torch.cat([generated_slice[:8], generated_slice[-8:]])
        self.assertTrue(torch.allclose(generated_slice, expected_slice, atol=1e-3))
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    @unittest.skip("Test not supported")
    def test_attention_slicing_forward_pass(self):
        pass


@slow
@require_torch_accelerator
class WanPipelineIntegrationTests(unittest.TestCase):
    prompt = "A painting of a squirrel eating a burger."

    def setUp(self):
        super().setUp()
        gc.collect()
150
        backend_empty_cache(torch_device)
151
152
153
154

    def tearDown(self):
        super().tearDown()
        gc.collect()
155
        backend_empty_cache(torch_device)
156
157
158
159

    @unittest.skip("TODO: test needs to be implemented")
    def test_Wanx(self):
        pass