scheduling_vq_diffusion.py 22.5 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Microsoft and The HuggingFace Team. All rights reserved.
Will Berman's avatar
Will Berman committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from dataclasses import dataclass
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .scheduling_utils import SchedulerMixin


@dataclass
class VQDiffusionSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
            Computed sample x_{t-1} of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.LongTensor


def index_to_log_onehot(x: torch.LongTensor, num_classes: int) -> torch.FloatTensor:
    """
    Convert batch of vector of class indices into batch of log onehot vectors

    Args:
        x (`torch.LongTensor` of shape `(batch size, vector length)`):
            Batch of class indices

        num_classes (`int`):
            number of classes to be used for the onehot vectors

    Returns:
        `torch.FloatTensor` of shape `(batch size, num classes, vector length)`:
            Log onehot vectors
    """
    x_onehot = F.one_hot(x, num_classes)
    x_onehot = x_onehot.permute(0, 2, 1)
    log_x = torch.log(x_onehot.float().clamp(min=1e-30))
    return log_x


def gumbel_noised(logits: torch.FloatTensor, generator: Optional[torch.Generator]) -> torch.FloatTensor:
    """
    Apply gumbel noise to `logits`
    """
    uniform = torch.rand(logits.shape, device=logits.device, generator=generator)
    gumbel_noise = -torch.log(-torch.log(uniform + 1e-30) + 1e-30)
    noised = gumbel_noise + logits
    return noised


def alpha_schedules(num_diffusion_timesteps: int, alpha_cum_start=0.99999, alpha_cum_end=0.000009):
    """
    Cumulative and non-cumulative alpha schedules.

    See section 4.1.
    """
    att = (
        np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (alpha_cum_end - alpha_cum_start)
        + alpha_cum_start
    )
    att = np.concatenate(([1], att))
    at = att[1:] / att[:-1]
    att = np.concatenate((att[1:], [1]))
    return at, att


def gamma_schedules(num_diffusion_timesteps: int, gamma_cum_start=0.000009, gamma_cum_end=0.99999):
    """
    Cumulative and non-cumulative gamma schedules.

    See section 4.1.
    """
    ctt = (
        np.arange(0, num_diffusion_timesteps) / (num_diffusion_timesteps - 1) * (gamma_cum_end - gamma_cum_start)
        + gamma_cum_start
    )
    ctt = np.concatenate(([0], ctt))
    one_minus_ctt = 1 - ctt
    one_minus_ct = one_minus_ctt[1:] / one_minus_ctt[:-1]
    ct = 1 - one_minus_ct
    ctt = np.concatenate((ctt[1:], [0]))
    return ct, ctt


class VQDiffusionScheduler(SchedulerMixin, ConfigMixin):
    """
108
    A scheduler for vector quantized diffusion.
Will Berman's avatar
Will Berman committed
109

110
111
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
Will Berman's avatar
Will Berman committed
112
113
114
115
116

    Args:
        num_vec_classes (`int`):
            The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked
            latent pixel.
117
118
119
        num_train_timesteps (`int`, defaults to 100):
            The number of diffusion steps to train the model.
        alpha_cum_start (`float`, defaults to 0.99999):
Will Berman's avatar
Will Berman committed
120
            The starting cumulative alpha value.
121
        alpha_cum_end (`float`, defaults to 0.00009):
Will Berman's avatar
Will Berman committed
122
            The ending cumulative alpha value.
123
        gamma_cum_start (`float`, defaults to 0.00009):
Will Berman's avatar
Will Berman committed
124
            The starting cumulative gamma value.
125
        gamma_cum_end (`float`, defaults to 0.99999):
Will Berman's avatar
Will Berman committed
126
127
128
            The ending cumulative gamma value.
    """

129
130
    order = 1

Will Berman's avatar
Will Berman committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    @register_to_config
    def __init__(
        self,
        num_vec_classes: int,
        num_train_timesteps: int = 100,
        alpha_cum_start: float = 0.99999,
        alpha_cum_end: float = 0.000009,
        gamma_cum_start: float = 0.000009,
        gamma_cum_end: float = 0.99999,
    ):
        self.num_embed = num_vec_classes

        # By convention, the index for the mask class is the last class index
        self.mask_class = self.num_embed - 1

        at, att = alpha_schedules(num_train_timesteps, alpha_cum_start=alpha_cum_start, alpha_cum_end=alpha_cum_end)
        ct, ctt = gamma_schedules(num_train_timesteps, gamma_cum_start=gamma_cum_start, gamma_cum_end=gamma_cum_end)

        num_non_mask_classes = self.num_embed - 1
        bt = (1 - at - ct) / num_non_mask_classes
        btt = (1 - att - ctt) / num_non_mask_classes

        at = torch.tensor(at.astype("float64"))
        bt = torch.tensor(bt.astype("float64"))
        ct = torch.tensor(ct.astype("float64"))
        log_at = torch.log(at)
        log_bt = torch.log(bt)
        log_ct = torch.log(ct)

        att = torch.tensor(att.astype("float64"))
        btt = torch.tensor(btt.astype("float64"))
        ctt = torch.tensor(ctt.astype("float64"))
        log_cumprod_at = torch.log(att)
        log_cumprod_bt = torch.log(btt)
        log_cumprod_ct = torch.log(ctt)

        self.log_at = log_at.float()
        self.log_bt = log_bt.float()
        self.log_ct = log_ct.float()
        self.log_cumprod_at = log_cumprod_at.float()
        self.log_cumprod_bt = log_cumprod_bt.float()
        self.log_cumprod_ct = log_cumprod_ct.float()

        # setable values
        self.num_inference_steps = None
        self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
180
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Will Berman's avatar
Will Berman committed
181
182
183

        Args:
            num_inference_steps (`int`):
184
185
186
187
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps and diffusion process parameters (alpha, beta, gamma) should be moved
                to.
Will Berman's avatar
Will Berman committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        """
        self.num_inference_steps = num_inference_steps
        timesteps = np.arange(0, self.num_inference_steps)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps).to(device)

        self.log_at = self.log_at.to(device)
        self.log_bt = self.log_bt.to(device)
        self.log_ct = self.log_ct.to(device)
        self.log_cumprod_at = self.log_cumprod_at.to(device)
        self.log_cumprod_bt = self.log_cumprod_bt.to(device)
        self.log_cumprod_ct = self.log_cumprod_ct.to(device)

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: torch.long,
        sample: torch.LongTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[VQDiffusionSchedulerOutput, Tuple]:
        """
209
210
        Predict the sample from the previous timestep by the reverse transition distribution. See
        [`~VQDiffusionScheduler.q_posterior`] for more details about how the distribution is computer.
Will Berman's avatar
Will Berman committed
211
212
213
214
215
216
217

        Args:
            log_p_x_0: (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
                The log probabilities for the predicted classes of the initial latent pixels. Does not include a
                prediction for the masked class as the initial unnoised image cannot be masked.
            t (`torch.long`):
                The timestep that determines which transition matrices are used.
218
219
220
221
222
223
224
            x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
                The classes of each latent pixel at time `t`.
            generator (`torch.Generator`, or `None`):
                A random number generator for the noise applied to `p(x_{t-1} | x_t)` before it is sampled from.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] or
                `tuple`.
Will Berman's avatar
Will Berman committed
225
226

        Returns:
227
228
229
            [`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_vq_diffusion.VQDiffusionSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
Will Berman's avatar
Will Berman committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        """
        if timestep == 0:
            log_p_x_t_min_1 = model_output
        else:
            log_p_x_t_min_1 = self.q_posterior(model_output, sample, timestep)

        log_p_x_t_min_1 = gumbel_noised(log_p_x_t_min_1, generator)

        x_t_min_1 = log_p_x_t_min_1.argmax(dim=1)

        if not return_dict:
            return (x_t_min_1,)

        return VQDiffusionSchedulerOutput(prev_sample=x_t_min_1)

    def q_posterior(self, log_p_x_0, x_t, t):
        """
247
        Calculates the log probabilities for the predicted classes of the image at timestep `t-1`:
Will Berman's avatar
Will Berman committed
248

249
        ```
Will Berman's avatar
Will Berman committed
250
        p(x_{t-1} | x_t) = sum( q(x_t | x_{t-1}) * q(x_{t-1} | x_0) * p(x_0) / q(x_t | x_0) )
251
        ```
Will Berman's avatar
Will Berman committed
252
253

        Args:
254
            log_p_x_0 (`torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`):
Will Berman's avatar
Will Berman committed
255
256
                The log probabilities for the predicted classes of the initial latent pixels. Does not include a
                prediction for the masked class as the initial unnoised image cannot be masked.
257
258
259
            x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
                The classes of each latent pixel at time `t`.
            t (`torch.Long`):
Will Berman's avatar
Will Berman committed
260
261
262
263
                The timestep that determines which transition matrix is used.

        Returns:
            `torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`:
264
                The log probabilities for the predicted classes of the image at timestep `t-1`.
Will Berman's avatar
Will Berman committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
        """
        log_onehot_x_t = index_to_log_onehot(x_t, self.num_embed)

        log_q_x_t_given_x_0 = self.log_Q_t_transitioning_to_known_class(
            t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=True
        )

        log_q_t_given_x_t_min_1 = self.log_Q_t_transitioning_to_known_class(
            t=t, x_t=x_t, log_onehot_x_t=log_onehot_x_t, cumulative=False
        )

        # p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0)          ...      p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0)
        #               .                    .                                   .
        #               .                            .                           .
        #               .                                      .                 .
        # p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})  ...      p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
        q = log_p_x_0 - log_q_x_t_given_x_0

        # sum_0 = p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}), ... ,
        # sum_n = p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) + ... + p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1})
        q_log_sum_exp = torch.logsumexp(q, dim=1, keepdim=True)

        # p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0          ...      p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n
        #                        .                             .                                   .
        #                        .                                     .                           .
        #                        .                                               .                 .
        # p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0  ...      p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n
        q = q - q_log_sum_exp

        # (p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}          ...      (p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
        #                                         .                                                .                                              .
        #                                         .                                                        .                                      .
        #                                         .                                                                  .                            .
        # (p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}  ...      (p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}
        # c_cumulative_{t-1}                                                                                 ...      c_cumulative_{t-1}
        q = self.apply_cumulative_transitions(q, t - 1)

        # ((p_0(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_0              ...      ((p_n(x_0=C_0 | x_t) / q(x_t | x_0=C_0) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_0) * sum_n
        #                                                            .                                                                 .                                              .
        #                                                            .                                                                         .                                      .
        #                                                            .                                                                                   .                            .
        # ((p_0(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_0) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_0  ...      ((p_n(x_0=C_{k-1} | x_t) / q(x_t | x_0=C_{k-1}) / sum_n) * a_cumulative_{t-1} + b_cumulative_{t-1}) * q(x_t | x_{t-1}=C_{k-1}) * sum_n
        # c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0                                                                                       ...      c_cumulative_{t-1} * q(x_t | x_{t-1}=C_k) * sum_0
        log_p_x_t_min_1 = q + log_q_t_given_x_t_min_1 + q_log_sum_exp

        # For each column, there are two possible cases.
        #
        # Where:
        # - sum(p_n(x_0))) is summing over all classes for x_0
        # - C_i is the class transitioning from (not to be confused with c_t and c_cumulative_t being used for gamma's)
        # - C_j is the class transitioning to
        #
        # 1. x_t is masked i.e. x_t = c_k
        #
        # Simplifying the expression, the column vector is:
        #                                                      .
        #                                                      .
        #                                                      .
        # (c_t / c_cumulative_t) * (a_cumulative_{t-1} * p_n(x_0 = C_i | x_t) + b_cumulative_{t-1} * sum(p_n(x_0)))
        #                                                      .
        #                                                      .
        #                                                      .
        # (c_cumulative_{t-1} / c_cumulative_t) * sum(p_n(x_0))
        #
        # From equation (11) stated in terms of forward probabilities, the last row is trivially verified.
        #
        # For the other rows, we can state the equation as ...
        #
        # (c_t / c_cumulative_t) * [b_cumulative_{t-1} * p(x_0=c_0) + ... + (a_cumulative_{t-1} + b_cumulative_{t-1}) * p(x_0=C_i) + ... + b_cumulative_{k-1} * p(x_0=c_{k-1})]
        #
        # This verifies the other rows.
        #
        # 2. x_t is not masked
        #
        # Simplifying the expression, there are two cases for the rows of the column vector, where C_j = C_i and where C_j != C_i:
        #                                                      .
        #                                                      .
        #                                                      .
        # C_j != C_i:        b_t * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / b_cumulative_t) * p_n(x_0 = C_i) + ... + (b_cumulative_{t-1} / (a_cumulative_t + b_cumulative_t)) * p_n(c_0=C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
        #                                                      .
        #                                                      .
        #                                                      .
        # C_j = C_i: (a_t + b_t) * ((b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_0) + ... + ((a_cumulative_{t-1} + b_cumulative_{t-1}) / (a_cumulative_t + b_cumulative_t)) * p_n(x_0 = C_i = C_j) + ... + (b_cumulative_{t-1} / b_cumulative_t) * p_n(x_0 = c_{k-1}))
        #                                                      .
        #                                                      .
        #                                                      .
        # 0
        #
        # The last row is trivially verified. The other rows can be verified by directly expanding equation (11) stated in terms of forward probabilities.
        return log_p_x_t_min_1

    def log_Q_t_transitioning_to_known_class(
        self, *, t: torch.int, x_t: torch.LongTensor, log_onehot_x_t: torch.FloatTensor, cumulative: bool
    ):
        """
360
        Calculates the log probabilities of the rows from the (cumulative or non-cumulative) transition matrix for each
Will Berman's avatar
Will Berman committed
361
362
363
        latent pixel in `x_t`.

        Args:
364
            t (`torch.Long`):
Will Berman's avatar
Will Berman committed
365
366
367
368
                The timestep that determines which transition matrix is used.
            x_t (`torch.LongTensor` of shape `(batch size, num latent pixels)`):
                The classes of each latent pixel at time `t`.
            log_onehot_x_t (`torch.FloatTensor` of shape `(batch size, num classes, num latent pixels)`):
369
                The log one-hot vectors of `x_t`.
Will Berman's avatar
Will Berman committed
370
            cumulative (`bool`):
371
372
                If cumulative is `False`, the single step transition matrix `t-1`->`t` is used. If cumulative is
                `True`, the cumulative transition matrix `0`->`t` is used.
Will Berman's avatar
Will Berman committed
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

        Returns:
            `torch.FloatTensor` of shape `(batch size, num classes - 1, num latent pixels)`:
                Each _column_ of the returned matrix is a _row_ of log probabilities of the complete probability
                transition matrix.

                When non cumulative, returns `self.num_classes - 1` rows because the initial latent pixel cannot be
                masked.

                Where:
                - `q_n` is the probability distribution for the forward process of the `n`th latent pixel.
                - C_0 is a class of a latent pixel embedding
                - C_k is the class of the masked latent pixel

                non-cumulative result (omitting logarithms):
                ```
                q_0(x_t | x_{t-1} = C_0) ... q_n(x_t | x_{t-1} = C_0)
                          .      .                     .
                          .               .            .
                          .                      .     .
                q_0(x_t | x_{t-1} = C_k) ... q_n(x_t | x_{t-1} = C_k)
                ```

                cumulative result (omitting logarithms):
                ```
                q_0_cumulative(x_t | x_0 = C_0)    ...  q_n_cumulative(x_t | x_0 = C_0)
                          .               .                          .
                          .                        .                 .
                          .                               .          .
                q_0_cumulative(x_t | x_0 = C_{k-1}) ... q_n_cumulative(x_t | x_0 = C_{k-1})
                ```
        """
        if cumulative:
            a = self.log_cumprod_at[t]
            b = self.log_cumprod_bt[t]
            c = self.log_cumprod_ct[t]
        else:
            a = self.log_at[t]
            b = self.log_bt[t]
            c = self.log_ct[t]

        if not cumulative:
            # The values in the onehot vector can also be used as the logprobs for transitioning
            # from masked latent pixels. If we are not calculating the cumulative transitions,
            # we need to save these vectors to be re-appended to the final matrix so the values
            # aren't overwritten.
            #
            # `P(x_t!=mask|x_{t-1=mask}) = 0` and 0 will be the value of the last row of the onehot vector
            # if x_t is not masked
            #
            # `P(x_t=mask|x_{t-1=mask}) = 1` and 1 will be the value of the last row of the onehot vector
            # if x_t is masked
            log_onehot_x_t_transitioning_from_masked = log_onehot_x_t[:, -1, :].unsqueeze(1)

        # `index_to_log_onehot` will add onehot vectors for masked pixels,
        # so the default one hot matrix has one too many rows. See the doc string
        # for an explanation of the dimensionality of the returned matrix.
        log_onehot_x_t = log_onehot_x_t[:, :-1, :]

        # this is a cheeky trick to produce the transition probabilities using log one-hot vectors.
        #
        # Don't worry about what values this sets in the columns that mark transitions
        # to masked latent pixels. They are overwrote later with the `mask_class_mask`.
        #
        # Looking at the below logspace formula in non-logspace, each value will evaluate to either
        # `1 * a + b = a + b` where `log_Q_t` has the one hot value in the column
        # or
        # `0 * a + b = b` where `log_Q_t` has the 0 values in the column.
        #
        # See equation 7 for more details.
        log_Q_t = (log_onehot_x_t + a).logaddexp(b)

        # The whole column of each masked pixel is `c`
        mask_class_mask = x_t == self.mask_class
        mask_class_mask = mask_class_mask.unsqueeze(1).expand(-1, self.num_embed - 1, -1)
        log_Q_t[mask_class_mask] = c

        if not cumulative:
            log_Q_t = torch.cat((log_Q_t, log_onehot_x_t_transitioning_from_masked), dim=1)

        return log_Q_t

    def apply_cumulative_transitions(self, q, t):
        bsz = q.shape[0]
        a = self.log_cumprod_at[t]
        b = self.log_cumprod_bt[t]
        c = self.log_cumprod_ct[t]

        num_latent_pixels = q.shape[2]
        c = c.expand(bsz, 1, num_latent_pixels)

        q = (q + a).logaddexp(b)
        q = torch.cat((q, c), dim=1)

        return q