scheduling_euler_ancestral_discrete.py 16.2 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
23
24
from ..utils import BaseOutput, logging, randn_tensor
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
25
26
27
28
29
30
31
32
33


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerAncestralDiscrete
class EulerAncestralDiscreteSchedulerOutput(BaseOutput):
    """
34
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
35
36
37

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
38
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
39
40
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
41
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
42
43
44
45
46
47
48
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


49
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
50
51
52
53
54
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
55
56
57
58
59
60
61
62
63
64
65
66
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
67
68
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
69
70
71
72

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
73
    if alpha_transform_type == "cosine":
74

YiYi Xu's avatar
YiYi Xu committed
75
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
        raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}")
85
86
87
88
89

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
90
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
91
92
93
    return torch.tensor(betas, dtype=torch.float32)


hlky's avatar
hlky committed
94
95
class EulerAncestralDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
96
    Ancestral sampling with Euler method steps.
hlky's avatar
hlky committed
97

98
99
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
100
101

    Args:
102
103
104
105
106
107
108
109
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
110
            `linear` or `scaled_linear`.
111
112
113
114
115
116
117
118
119
120
121
122
123
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
            An offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
            Diffusion.
hlky's avatar
hlky committed
124
125
    """

Kashif Rasul's avatar
Kashif Rasul committed
126
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
127
    order = 1
128

hlky's avatar
hlky committed
129
130
131
132
133
134
135
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
136
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
137
        prediction_type: str = "epsilon",
138
139
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
hlky's avatar
hlky committed
140
141
    ):
        if trained_betas is not None:
142
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
143
144
145
146
147
148
149
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
150
151
152
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)

        # setable values
        self.num_inference_steps = None
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
        self.is_scale_input_called = False

169
170
171
172
173
174
175
176
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

hlky's avatar
hlky committed
177
178
179
180
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
181
182
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
183
184

        Args:
185
186
187
188
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
189
190

        Returns:
191
192
            `torch.FloatTensor`:
                A scaled input sample.
hlky's avatar
hlky committed
193
194
195
196
197
198
199
200
201
202
203
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample

    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
        """
204
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
205
206
207

        Args:
            num_inference_steps (`int`):
208
209
210
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
hlky's avatar
hlky committed
211
212
213
        """
        self.num_inference_steps = num_inference_steps

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )

hlky's avatar
hlky committed
236
237
238
239
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
240
241
242
243
244
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
hlky's avatar
hlky committed
245
246
247
248
249
250
251
252
253
254

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]:
        """
255
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
256
257
258
        process from the learned model outputs (most often the predicted noise).

        Args:
259
260
261
262
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
hlky's avatar
hlky committed
263
            sample (`torch.FloatTensor`):
264
265
266
267
268
269
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple.
hlky's avatar
hlky committed
270
271

        Returns:
272
273
274
275
            [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`,
                [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
276
277
278
279
280
281
282
283
284

        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
285
286
287
288
289
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
290
291
292
            )

        if not self.is_scale_input_called:
293
            logger.warning(
hlky's avatar
hlky committed
294
295
296
297
298
299
300
301
302
303
304
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)

        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
305
306
307
308
309
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
310
311
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
312
313
314
315
316
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

hlky's avatar
hlky committed
317
318
319
320
321
322
323
324
325
326
327
328
        sigma_from = self.sigmas[step_index]
        sigma_to = self.sigmas[step_index + 1]
        sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5
        sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma

        dt = sigma_down - sigma

        prev_sample = sample + derivative * dt

Patrick von Platen's avatar
Patrick von Platen committed
329
        device = model_output.device
330
        noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator)
331

hlky's avatar
hlky committed
332
333
334
335
336
337
338
339
340
        prev_sample = prev_sample + noise * sigma_up

        if not return_dict:
            return (prev_sample,)

        return EulerAncestralDiscreteSchedulerOutput(
            prev_sample=prev_sample, pred_original_sample=pred_original_sample
        )

341
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
hlky's avatar
hlky committed
342
343
344
345
346
347
348
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
349
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
350
351
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
352
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
353
354
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
355
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
356
357
            timesteps = timesteps.to(original_samples.device)

Anton Lozhkov's avatar
Anton Lozhkov committed
358
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
hlky's avatar
hlky committed
359

360
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
361
362
363
364
365
366
367
368
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps