test_unclip_image_variation.py 17.1 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import random
import unittest

import numpy as np
import torch
22
23
24
25
26
27
28
29
from transformers import (
    CLIPImageProcessor,
    CLIPTextConfig,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionConfig,
    CLIPVisionModelWithProjection,
)
Will Berman's avatar
Will Berman committed
30

31
32
33
34
35
36
37
from diffusers import (
    DiffusionPipeline,
    UnCLIPImageVariationPipeline,
    UnCLIPScheduler,
    UNet2DConditionModel,
    UNet2DModel,
)
Will Berman's avatar
Will Berman committed
38
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
Dhruv Nair's avatar
Dhruv Nair committed
39
from diffusers.utils.testing_utils import (
40
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
41
42
43
44
    enable_full_determinism,
    floats_tensor,
    load_image,
    load_numpy,
45
    nightly,
46
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
47
48
49
    skip_mps,
    torch_device,
)
Will Berman's avatar
Will Berman committed
50

51
52
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
53
54


55
enable_full_determinism()
56
57


58
59
class UnCLIPImageVariationPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPImageVariationPipeline
60
61
    params = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
    batch_params = IMAGE_VARIATION_BATCH_PARAMS
Will Berman's avatar
Will Berman committed
62

63
64
65
66
67
68
    required_optional_params = [
        "generator",
        "return_dict",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
69
    test_xformers_attention = False
Marc Sun's avatar
Marc Sun committed
70
    supports_dduf = False
Will Berman's avatar
Will Berman committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            num_hidden_layers=5,
            num_attention_heads=4,
            image_size=32,
            intermediate_size=37,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
146
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
168
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

192
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        feature_extractor = CLIPImageProcessor(crop_size=32, size=32)

        image_encoder = self.dummy_image_encoder

216
217
218
219
220
221
222
223
224
225
226
227
        return {
            "decoder": decoder,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "text_proj": text_proj,
            "feature_extractor": feature_extractor,
            "image_encoder": image_encoder,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }
Will Berman's avatar
Will Berman committed
228

229
    def get_dummy_inputs(self, device, seed=0, pil_image=True):
Will Berman's avatar
Will Berman committed
230
        input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
231
232
233
234
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
Will Berman's avatar
Will Berman committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

        if pil_image:
            input_image = input_image * 0.5 + 0.5
            input_image = input_image.clamp(0, 1)
            input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy()
            input_image = DiffusionPipeline.numpy_to_pil(input_image)[0]

        return {
            "image": input_image,
            "generator": generator,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
            "output_type": "np",
        }

    def test_unclip_image_variation_input_tensor(self):
        device = "cpu"

253
254
255
256
257
258
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
Will Berman's avatar
Will Berman committed
259

260
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
261
262
263
264

        output = pipe(**pipeline_inputs)
        image = output.images

265
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
Will Berman's avatar
Will Berman committed
266
267
268
269
270
271
272
273
274

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

275
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
276
277
278
279

        expected_slice = np.array(
            [
                0.9997,
280
281
282
283
284
285
286
287
                0.0002,
                0.9997,
                0.9997,
                0.9969,
                0.0023,
                0.9997,
                0.9969,
                0.9970,
Will Berman's avatar
Will Berman committed
288
289
290
291
292
293
294
295
296
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_image(self):
        device = "cpu"

297
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
298

299
300
301
302
303
304
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
305
306
307
308

        output = pipe(**pipeline_inputs)
        image = output.images

309
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
310
311
312
313
314
315
316
317
318

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

319
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
320

321
        expected_slice = np.array([0.9997, 0.0003, 0.9997, 0.9997, 0.9970, 0.0024, 0.9997, 0.9971, 0.9971])
Will Berman's avatar
Will Berman committed
322
323
324
325
326
327
328

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

    def test_unclip_image_variation_input_list_images(self):
        device = "cpu"

329
        components = self.get_dummy_components()
Will Berman's avatar
Will Berman committed
330

331
332
333
334
335
336
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

        pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
337
338
339
340
341
342
343
344
        pipeline_inputs["image"] = [
            pipeline_inputs["image"],
            pipeline_inputs["image"],
        ]

        output = pipe(**pipeline_inputs)
        image = output.images

345
        tuple_pipeline_inputs = self.get_dummy_inputs(device, pil_image=True)
Will Berman's avatar
Will Berman committed
346
347
348
349
350
351
352
353
354
355
356
357
358
        tuple_pipeline_inputs["image"] = [
            tuple_pipeline_inputs["image"],
            tuple_pipeline_inputs["image"],
        ]

        image_from_tuple = pipe(
            **tuple_pipeline_inputs,
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

359
        assert image.shape == (2, 64, 64, 3)
Will Berman's avatar
Will Berman committed
360
361
362
363

        expected_slice = np.array(
            [
                0.9997,
364
365
366
367
368
369
370
371
                0.9989,
                0.0008,
                0.0021,
                0.9960,
                0.0018,
                0.0014,
                0.0002,
                0.9933,
Will Berman's avatar
Will Berman committed
372
373
374
375
376
377
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

378
379
380
381
382
383
    def test_unclip_passed_image_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

384
385
386
387
388
389
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)
390
391
392
393
394

        generator = torch.Generator(device=device).manual_seed(0)
        dtype = pipe.decoder.dtype
        batch_size = 1

395
396
397
398
399
400
        shape = (
            batch_size,
            pipe.decoder.config.in_channels,
            pipe.decoder.config.sample_size,
            pipe.decoder.config.sample_size,
        )
401
402
403
404
405
406
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
407
408
409
            pipe.super_res_first.config.in_channels // 2,
            pipe.super_res_first.config.sample_size,
            pipe.super_res_first.config.sample_size,
410
        )
411
        generator = torch.Generator(device=device).manual_seed(0)
412
413
414
415
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

416
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
417
418
419
420
421

        img_out_1 = pipe(
            **pipeline_inputs, decoder_latents=decoder_latents, super_res_latents=super_res_latents
        ).images

422
        pipeline_inputs = self.get_dummy_inputs(device, pil_image=False)
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        # Don't pass image, instead pass embedding
        image = pipeline_inputs.pop("image")
        image_embeddings = pipe.image_encoder(image).image_embeds

        img_out_2 = pipe(
            **pipeline_inputs,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            image_embeddings=image_embeddings,
        ).images

        # make sure passing text embeddings manually is identical
        assert np.abs(img_out_1 - img_out_2).max() < 1e-4

437
438
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
439
    @skip_mps
440
441
442
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

443
444
445
446
447
448
        # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
        expected_max_diff = 1e-2

        self._test_attention_slicing_forward_pass(
            test_max_difference=test_max_difference, expected_max_diff=expected_max_diff
        )
449
450
451

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
452
    @unittest.skip("UnCLIP produces very large differences. Test is not useful.")
453
    @skip_mps
454
    def test_inference_batch_single_identical(self):
455
456
457
458
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
459
        self._test_inference_batch_single_identical(
460
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=5e-3
461
462
463
        )

    def test_inference_batch_consistent(self):
464
465
466
467
468
        additional_params_copy_to_batched_inputs = [
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

469
470
471
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
472
473
474
475
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
476
        else:
477
478
479
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
480

481
    @skip_mps
482
483
484
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

485
    @unittest.skip("UnCLIP produces very large difference. Test is not useful.")
486
    @skip_mps
487
    def test_save_load_local(self):
488
        return super().test_save_load_local(expected_max_difference=4e-3)
489

490
    @skip_mps
491
492
493
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

494
495
496
497
    @unittest.skip("UnCLIP produces very large difference in fp16 vs fp32. Test is not useful.")
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1.0)

Will Berman's avatar
Will Berman committed
498

499
@nightly
500
@require_torch_accelerator
Will Berman's avatar
Will Berman committed
501
class UnCLIPImageVariationPipelineIntegrationTests(unittest.TestCase):
502
503
504
505
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
506
        backend_empty_cache(torch_device)
507

Will Berman's avatar
Will Berman committed
508
509
510
511
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
512
        backend_empty_cache(torch_device)
Will Berman's avatar
Will Berman committed
513
514
515
516
517
518
519
520
521
522

    def test_unclip_image_variation_karlo(self):
        input_image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png"
        )
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_cat_variation_fp16.npy"
        )

523
        pipeline = UnCLIPImageVariationPipeline.from_pretrained(
524
            "kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=torch.float16
525
        )
Will Berman's avatar
Will Berman committed
526
527
528
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

529
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
530
531
532
533
534
535
        output = pipeline(
            input_image,
            generator=generator,
            output_type="np",
        )

536
        image = output.images[0]
Will Berman's avatar
Will Berman committed
537
538

        assert image.shape == (256, 256, 3)
539

540
        assert_mean_pixel_difference(image, expected_image, 15)