test_unclip.py 16.7 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

import numpy as np
import torch
21
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
Will Berman's avatar
Will Berman committed
22
23
24

from diffusers import PriorTransformer, UnCLIPPipeline, UnCLIPScheduler, UNet2DConditionModel, UNet2DModel
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
Dhruv Nair's avatar
Dhruv Nair committed
25
from diffusers.utils.testing_utils import (
26
27
28
29
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_max_memory_allocated,
    backend_reset_peak_memory_stats,
Dhruv Nair's avatar
Dhruv Nair committed
30
31
32
    enable_full_determinism,
    load_numpy,
    nightly,
33
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
34
35
36
    skip_mps,
    torch_device,
)
Will Berman's avatar
Will Berman committed
37

38
39
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Will Berman's avatar
Will Berman committed
40
41


42
enable_full_determinism()
43
44


45
46
class UnCLIPPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = UnCLIPPipeline
47
48
49
50
51
52
53
54
55
56
    params = TEXT_TO_IMAGE_PARAMS - {
        "negative_prompt",
        "height",
        "width",
        "negative_prompt_embeds",
        "guidance_scale",
        "prompt_embeds",
        "cross_attention_kwargs",
    }
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
57
58
59
60
61
62
63
    required_optional_params = [
        "generator",
        "return_dict",
        "prior_num_inference_steps",
        "decoder_num_inference_steps",
        "super_res_num_inference_steps",
    ]
64
    test_xformers_attention = False
Will Berman's avatar
Will Berman committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

    @property
    def text_embedder_hidden_size(self):
        return 32

    @property
    def time_input_dim(self):
        return 32

    @property
    def block_out_channels_0(self):
        return self.time_input_dim

    @property
    def time_embed_dim(self):
        return self.time_input_dim * 4

    @property
    def cross_attention_dim(self):
        return 100

    @property
    def dummy_tokenizer(self):
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        return tokenizer

    @property
    def dummy_text_encoder(self):
        torch.manual_seed(0)
        config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=self.text_embedder_hidden_size,
            projection_dim=self.text_embedder_hidden_size,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        return CLIPTextModelWithProjection(config)

    @property
    def dummy_prior(self):
        torch.manual_seed(0)

        model_kwargs = {
            "num_attention_heads": 2,
            "attention_head_dim": 12,
            "embedding_dim": self.text_embedder_hidden_size,
            "num_layers": 1,
        }

        model = PriorTransformer(**model_kwargs)
        return model

    @property
    def dummy_text_proj(self):
        torch.manual_seed(0)

        model_kwargs = {
            "clip_embeddings_dim": self.text_embedder_hidden_size,
            "time_embed_dim": self.time_embed_dim,
            "cross_attention_dim": self.cross_attention_dim,
        }

        model = UnCLIPTextProjModel(**model_kwargs)
        return model

    @property
    def dummy_decoder(self):
        torch.manual_seed(0)

        model_kwargs = {
140
            "sample_size": 32,
Will Berman's avatar
Will Berman committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
            # RGB in channels
            "in_channels": 3,
            # Out channels is double in channels because predicts mean and variance
            "out_channels": 6,
            "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
            "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
            "mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "layers_per_block": 1,
            "cross_attention_dim": self.cross_attention_dim,
            "attention_head_dim": 4,
            "resnet_time_scale_shift": "scale_shift",
            "class_embed_type": "identity",
        }

        model = UNet2DConditionModel(**model_kwargs)
        return model

    @property
    def dummy_super_res_kwargs(self):
        return {
162
            "sample_size": 64,
Will Berman's avatar
Will Berman committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
            "layers_per_block": 1,
            "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
            "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
            "block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
            "in_channels": 6,
            "out_channels": 3,
        }

    @property
    def dummy_super_res_first(self):
        torch.manual_seed(0)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

    @property
    def dummy_super_res_last(self):
        # seeded differently to get different unet than `self.dummy_super_res_first`
        torch.manual_seed(1)

        model = UNet2DModel(**self.dummy_super_res_kwargs)
        return model

186
    def get_dummy_components(self):
Will Berman's avatar
Will Berman committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
        prior = self.dummy_prior
        decoder = self.dummy_decoder
        text_proj = self.dummy_text_proj
        text_encoder = self.dummy_text_encoder
        tokenizer = self.dummy_tokenizer
        super_res_first = self.dummy_super_res_first
        super_res_last = self.dummy_super_res_last

        prior_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="sample",
            num_train_timesteps=1000,
            clip_sample_range=5.0,
        )

        decoder_scheduler = UnCLIPScheduler(
            variance_type="learned_range",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

        super_res_scheduler = UnCLIPScheduler(
            variance_type="fixed_small_log",
            prediction_type="epsilon",
            num_train_timesteps=1000,
        )

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        components = {
            "prior": prior,
            "decoder": decoder,
            "text_proj": text_proj,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "super_res_first": super_res_first,
            "super_res_last": super_res_last,
            "prior_scheduler": prior_scheduler,
            "decoder_scheduler": decoder_scheduler,
            "super_res_scheduler": super_res_scheduler,
        }

        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "horse",
            "generator": generator,
            "prior_num_inference_steps": 2,
            "decoder_num_inference_steps": 2,
            "super_res_num_inference_steps": 2,
240
            "output_type": "np",
241
242
243
244
245
246
247
248
249
        }
        return inputs

    def test_unclip(self):
        device = "cpu"

        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
Will Berman's avatar
Will Berman committed
250
251
252
253
        pipe = pipe.to(device)

        pipe.set_progress_bar_config(disable=None)

254
        output = pipe(**self.get_dummy_inputs(device))
Will Berman's avatar
Will Berman committed
255
256
257
        image = output.images

        image_from_tuple = pipe(
258
            **self.get_dummy_inputs(device),
Will Berman's avatar
Will Berman committed
259
260
261
262
263
264
            return_dict=False,
        )[0]

        image_slice = image[0, -3:, -3:, -1]
        image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]

265
        assert image.shape == (1, 64, 64, 3)
Will Berman's avatar
Will Berman committed
266
267
268
269

        expected_slice = np.array(
            [
                0.9997,
270
271
272
273
274
275
276
277
                0.9988,
                0.0028,
                0.9997,
                0.9984,
                0.9965,
                0.0029,
                0.9986,
                0.0025,
Will Berman's avatar
Will Berman committed
278
279
280
281
282
283
            ]
        )

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
        assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2

284
285
286
287
288
289
    def test_unclip_passed_text_embed(self):
        device = torch.device("cpu")

        class DummyScheduler:
            init_noise_sigma = 1

290
        components = self.get_dummy_components()
291

292
        pipe = self.pipeline_class(**components)
293
294
        pipe = pipe.to(device)

295
296
297
298
299
300
        prior = components["prior"]
        decoder = components["decoder"]
        super_res_first = components["super_res_first"]
        tokenizer = components["tokenizer"]
        text_encoder = components["text_encoder"]

301
302
303
304
305
306
307
308
        generator = torch.Generator(device=device).manual_seed(0)
        dtype = prior.dtype
        batch_size = 1

        shape = (batch_size, prior.config.embedding_dim)
        prior_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )
309
        shape = (batch_size, decoder.config.in_channels, decoder.config.sample_size, decoder.config.sample_size)
310
        generator = torch.Generator(device=device).manual_seed(0)
311
312
313
314
315
316
        decoder_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        shape = (
            batch_size,
317
318
319
            super_res_first.config.in_channels // 2,
            super_res_first.config.sample_size,
            super_res_first.config.sample_size,
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        )
        super_res_latents = pipe.prepare_latents(
            shape, dtype=dtype, device=device, generator=generator, latents=None, scheduler=DummyScheduler()
        )

        pipe.set_progress_bar_config(disable=None)

        prompt = "this is a prompt example"

        generator = torch.Generator(device=device).manual_seed(0)
        output = pipe(
            [prompt],
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            output_type="np",
        )
        image = output.images

        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        )
        text_model_output = text_encoder(text_inputs.input_ids)
        text_attention_mask = text_inputs.attention_mask

        generator = torch.Generator(device=device).manual_seed(0)
        image_from_text = pipe(
            generator=generator,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            prior_latents=prior_latents,
            decoder_latents=decoder_latents,
            super_res_latents=super_res_latents,
            text_model_output=text_model_output,
            text_attention_mask=text_attention_mask,
            output_type="np",
        )[0]

        # make sure passing text embeddings manually is identical
        assert np.abs(image - image_from_text).max() < 1e-4

369
370
    # Overriding PipelineTesterMixin::test_attention_slicing_forward_pass
    # because UnCLIP GPU undeterminism requires a looser check.
371
    @skip_mps
372
373
374
    def test_attention_slicing_forward_pass(self):
        test_max_difference = torch_device == "cpu"

Patrick von Platen's avatar
Patrick von Platen committed
375
        self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference, expected_max_diff=0.01)
376
377
378

    # Overriding PipelineTesterMixin::test_inference_batch_single_identical
    # because UnCLIP undeterminism requires a looser check.
379
    @skip_mps
380
    def test_inference_batch_single_identical(self):
381
382
383
384
385
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]
386
387

        self._test_inference_batch_single_identical(
388
            additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs, expected_max_diff=9.8e-3
389
390
391
        )

    def test_inference_batch_consistent(self):
392
393
394
395
396
397
        additional_params_copy_to_batched_inputs = [
            "prior_num_inference_steps",
            "decoder_num_inference_steps",
            "super_res_num_inference_steps",
        ]

398
399
400
        if torch_device == "mps":
            # TODO: MPS errors with larger batch sizes
            batch_sizes = [2, 3]
401
402
403
404
            self._test_inference_batch_consistent(
                batch_sizes=batch_sizes,
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs,
            )
405
        else:
406
407
408
            self._test_inference_batch_consistent(
                additional_params_copy_to_batched_inputs=additional_params_copy_to_batched_inputs
            )
409

410
    @skip_mps
411
412
413
    def test_dict_tuple_outputs_equivalent(self):
        return super().test_dict_tuple_outputs_equivalent()

414
    @skip_mps
415
    def test_save_load_local(self):
416
        return super().test_save_load_local(expected_max_difference=5e-3)
417

418
    @skip_mps
419
420
421
    def test_save_load_optional_components(self):
        return super().test_save_load_optional_components()

422
423
424
425
    @unittest.skip("UnCLIP produces very large differences in fp16 vs fp32. Test is not useful.")
    def test_float16_inference(self):
        super().test_float16_inference(expected_max_diff=1.0)

Will Berman's avatar
Will Berman committed
426

427
428
@nightly
class UnCLIPPipelineCPUIntegrationTests(unittest.TestCase):
429
430
431
432
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
433
        backend_empty_cache(torch_device)
434

435
436
437
438
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
439
        backend_empty_cache(torch_device)
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    def test_unclip_karlo_cpu_fp32(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/unclip/karlo_v1_alpha_horse_cpu.npy"
        )

        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha")
        pipeline.set_progress_bar_config(disable=None)

        generator = torch.manual_seed(0)
        output = pipeline(
            "horse",
            num_images_per_prompt=1,
            generator=generator,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)
        assert np.abs(expected_image - image).max() < 1e-1


464
@nightly
465
@require_torch_accelerator
Will Berman's avatar
Will Berman committed
466
class UnCLIPPipelineIntegrationTests(unittest.TestCase):
467
468
469
470
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
471
        backend_empty_cache(torch_device)
472

Will Berman's avatar
Will Berman committed
473
474
475
476
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
477
        backend_empty_cache(torch_device)
Will Berman's avatar
Will Berman committed
478
479
480
481

    def test_unclip_karlo(self):
        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
482
            "/unclip/karlo_v1_alpha_horse_fp16.npy"
Will Berman's avatar
Will Berman committed
483
484
        )

485
        pipeline = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
486
487
488
        pipeline = pipeline.to(torch_device)
        pipeline.set_progress_bar_config(disable=None)

489
        generator = torch.Generator(device="cpu").manual_seed(0)
Will Berman's avatar
Will Berman committed
490
491
492
493
494
495
        output = pipeline(
            "horse",
            generator=generator,
            output_type="np",
        )

496
        image = output.images[0]
Will Berman's avatar
Will Berman committed
497
498

        assert image.shape == (256, 256, 3)
499

500
501
        assert_mean_pixel_difference(image, expected_image)

Will Berman's avatar
Will Berman committed
502
    def test_unclip_pipeline_with_sequential_cpu_offloading(self):
503
504
505
        backend_empty_cache(torch_device)
        backend_reset_max_memory_allocated(torch_device)
        backend_reset_peak_memory_stats(torch_device)
506

507
        pipe = UnCLIPPipeline.from_pretrained("kakaobrain/karlo-v1-alpha", torch_dtype=torch.float16)
508
509
510
511
512
513
514
515
516
517
518
519
520
        pipe.set_progress_bar_config(disable=None)
        pipe.enable_attention_slicing()
        pipe.enable_sequential_cpu_offload()

        _ = pipe(
            "horse",
            num_images_per_prompt=1,
            prior_num_inference_steps=2,
            decoder_num_inference_steps=2,
            super_res_num_inference_steps=2,
            output_type="np",
        )

521
        mem_bytes = backend_max_memory_allocated(torch_device)
522
523
        # make sure that less than 7 GB is allocated
        assert mem_bytes < 7 * 10**9