test_audioldm.py 16 KB
Newer Older
Sanchit Gandhi's avatar
Sanchit Gandhi committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
Sanchit Gandhi's avatar
Sanchit Gandhi committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import gc
import unittest

import numpy as np
import torch
import torch.nn.functional as F
from transformers import (
    ClapTextConfig,
    ClapTextModelWithProjection,
    RobertaTokenizer,
    SpeechT5HifiGan,
    SpeechT5HifiGanConfig,
)

from diffusers import (
    AudioLDMPipeline,
    AutoencoderKL,
    DDIMScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    UNet2DConditionModel,
)
Dhruv Nair's avatar
Dhruv Nair committed
39
from diffusers.utils import is_xformers_available
40
from diffusers.utils.testing_utils import backend_empty_cache, enable_full_determinism, nightly, torch_device
Sanchit Gandhi's avatar
Sanchit Gandhi committed
41

42
43
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
Sanchit Gandhi's avatar
Sanchit Gandhi committed
44
45


46
enable_full_determinism()
47
48


Sanchit Gandhi's avatar
Sanchit Gandhi committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
class AudioLDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AudioLDMPipeline
    params = TEXT_TO_AUDIO_PARAMS
    batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_waveforms_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )

Marc Sun's avatar
Marc Sun committed
66
67
    supports_dduf = False

Sanchit Gandhi's avatar
Sanchit Gandhi committed
68
69
70
    def get_dummy_components(self):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
71
72
73
            block_out_channels=(8, 16),
            layers_per_block=1,
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
74
75
76
77
78
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
79
            cross_attention_dim=(8, 16),
Sanchit Gandhi's avatar
Sanchit Gandhi committed
80
            class_embed_type="simple_projection",
81
            projection_class_embeddings_input_dim=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
82
83
84
85
86
87
88
89
90
91
92
            class_embeddings_concat=True,
        )
        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
93
            block_out_channels=[8, 16],
Sanchit Gandhi's avatar
Sanchit Gandhi committed
94
95
            in_channels=1,
            out_channels=1,
96
            norm_num_groups=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
97
98
99
100
101
102
103
104
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )
        torch.manual_seed(0)
        text_encoder_config = ClapTextConfig(
            bos_token_id=0,
            eos_token_id=2,
105
            hidden_size=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
106
107
            intermediate_size=37,
            layer_norm_eps=1e-05,
108
109
            num_attention_heads=1,
            num_hidden_layers=1,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
110
111
            pad_token_id=1,
            vocab_size=1000,
112
            projection_dim=8,
Sanchit Gandhi's avatar
Sanchit Gandhi committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
        )
        text_encoder = ClapTextModelWithProjection(text_encoder_config)
        tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)

        vocoder_config = SpeechT5HifiGanConfig(
            model_in_dim=8,
            sampling_rate=16000,
            upsample_initial_channel=16,
            upsample_rates=[2, 2],
            upsample_kernel_sizes=[4, 4],
            resblock_kernel_sizes=[3, 7],
            resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
            normalize_before=False,
        )

        vocoder = SpeechT5HifiGan(vocoder_config)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "vocoder": vocoder,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
        }
        return inputs

    def test_audioldm_ddim(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(**inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
            [-0.0050, 0.0050, -0.0060, 0.0033, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0033]
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-2

    def test_audioldm_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        text_inputs = audioldm_pipe.tokenizer(
            prompt,
            padding="max_length",
            max_length=audioldm_pipe.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_inputs = text_inputs["input_ids"].to(torch_device)

        prompt_embeds = audioldm_pipe.text_encoder(
            text_inputs,
        )
        prompt_embeds = prompt_embeds.text_embeds
        # additional L_2 normalization over each hidden-state
        prompt_embeds = F.normalize(prompt_embeds, dim=-1)

        inputs["prompt_embeds"] = prompt_embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

    def test_audioldm_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        # forward
        output = audioldm_pipe(**inputs)
        audio_1 = output.audios[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = 3 * [inputs.pop("prompt")]

        embeds = []
        for p in [prompt, negative_prompt]:
            text_inputs = audioldm_pipe.tokenizer(
                p,
                padding="max_length",
                max_length=audioldm_pipe.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_inputs = text_inputs["input_ids"].to(torch_device)

            text_embeds = audioldm_pipe.text_encoder(
                text_inputs,
            )
            text_embeds = text_embeds.text_embeds
            # additional L_2 normalization over each hidden-state
            text_embeds = F.normalize(text_embeds, dim=-1)

            embeds.append(text_embeds)

        inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds

        # forward
        output = audioldm_pipe(**inputs)
        audio_2 = output.audios[0]

        assert np.abs(audio_1 - audio_2).max() < 1e-2

    def test_audioldm_negative_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        negative_prompt = "egg cracking"
        output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) == 256

        audio_slice = audio[:10]
        expected_slice = np.array(
            [-0.0051, 0.0050, -0.0060, 0.0034, -0.0026, 0.0033, -0.0027, 0.0033, -0.0028, 0.0032]
        )

        assert np.abs(audio_slice - expected_slice).max() < 1e-2

    def test_audioldm_num_waveforms_per_prompt(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = "A hammer hitting a wooden surface"

        # test num_waveforms_per_prompt=1 (default)
        audios = audioldm_pipe(prompt, num_inference_steps=2).audios

        assert audios.shape == (1, 256)

        # test num_waveforms_per_prompt=1 (default) for batch of prompts
        batch_size = 2
        audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios

        assert audios.shape == (batch_size, 256)

        # test num_waveforms_per_prompt for single prompt
        num_waveforms_per_prompt = 2
        audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios

        assert audios.shape == (num_waveforms_per_prompt, 256)

        # test num_waveforms_per_prompt for batch of prompts
        batch_size = 2
        audios = audioldm_pipe(
            [prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
        ).audios

        assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)

    def test_audioldm_audio_length_in_s(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)
        vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate

        inputs = self.get_dummy_inputs(device)
        output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.016

        output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
        audio = output.audios[0]

        assert audio.ndim == 1
        assert len(audio) / vocoder_sampling_rate == 0.032

    def test_audioldm_vocoder_model_in_dim(self):
        components = self.get_dummy_components()
        audioldm_pipe = AudioLDMPipeline(**components)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        prompt = ["hey"]

        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        assert audio_shape == (1, 256)

        config = audioldm_pipe.vocoder.config
        config.model_in_dim *= 2
        audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
        output = audioldm_pipe(prompt, num_inference_steps=1)
        audio_shape = output.audios.shape
        # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
        assert audio_shape == (1, 256)

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)

    def test_inference_batch_single_identical(self):
366
        self._test_inference_batch_single_identical()
Sanchit Gandhi's avatar
Sanchit Gandhi committed
367

368
369
370
371
372
373
374
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)

Sanchit Gandhi's avatar
Sanchit Gandhi committed
375

376
@nightly
Sanchit Gandhi's avatar
Sanchit Gandhi committed
377
class AudioLDMPipelineSlowTests(unittest.TestCase):
378
379
380
    def setUp(self):
        super().setUp()
        gc.collect()
381
        backend_empty_cache(torch_device)
382

Sanchit Gandhi's avatar
Sanchit Gandhi committed
383
384
385
    def tearDown(self):
        super().tearDown()
        gc.collect()
386
        backend_empty_cache(torch_device)
Sanchit Gandhi's avatar
Sanchit Gandhi committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

    def test_audioldm(self):
        audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        inputs["num_inference_steps"] = 25
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81920

        audio_slice = audio[77230:77240]
        expected_slice = np.array(
            [-0.4884, -0.4607, 0.0023, 0.5007, 0.5896, 0.5151, 0.3813, -0.0208, -0.3687, -0.4315]
        )
        max_diff = np.abs(expected_slice - audio_slice).max()
        assert max_diff < 1e-2

420
421
422

@nightly
class AudioLDMPipelineNightlyTests(unittest.TestCase):
423
424
425
    def setUp(self):
        super().setUp()
        gc.collect()
426
        backend_empty_cache(torch_device)
427

428
429
430
    def tearDown(self):
        super().tearDown()
        gc.collect()
431
        backend_empty_cache(torch_device)
432
433
434
435
436
437
438
439
440
441
442
443
444
445

    def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
        generator = torch.Generator(device=generator_device).manual_seed(seed)
        latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
        latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
        inputs = {
            "prompt": "A hammer hitting a wooden surface",
            "latents": latents,
            "generator": generator,
            "num_inference_steps": 3,
            "guidance_scale": 2.5,
        }
        return inputs

Sanchit Gandhi's avatar
Sanchit Gandhi committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
    def test_audioldm_lms(self):
        audioldm_pipe = AudioLDMPipeline.from_pretrained("cvssp/audioldm")
        audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
        audioldm_pipe = audioldm_pipe.to(torch_device)
        audioldm_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_inputs(torch_device)
        audio = audioldm_pipe(**inputs).audios[0]

        assert audio.ndim == 1
        assert len(audio) == 81920

        audio_slice = audio[27780:27790]
        expected_slice = np.array([-0.2131, -0.0873, -0.0124, -0.0189, 0.0569, 0.1373, 0.1883, 0.2886, 0.3297, 0.2212])
        max_diff = np.abs(expected_slice - audio_slice).max()
461
        assert max_diff < 3e-2