test_amused.py 6.48 KB
Newer Older
Will Berman's avatar
Will Berman committed
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
Will Berman's avatar
Will Berman committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from diffusers.utils.testing_utils import (
    enable_full_determinism,
25
    require_torch_accelerator,
Dhruv Nair's avatar
Dhruv Nair committed
26
27
28
    slow,
    torch_device,
)
Will Berman's avatar
Will Berman committed
29
30
31
32
33
34
35
36
37
38
39
40

from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin


enable_full_determinism()


class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
    pipeline_class = AmusedPipeline
    params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
    batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
Aryan's avatar
Aryan committed
41
    test_layerwise_casting = True
Aryan's avatar
Aryan committed
42
    test_group_offloading = True
Will Berman's avatar
Will Berman committed
43
44
45
46

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = UVit2DModel(
47
            hidden_size=8,
Will Berman's avatar
Will Berman committed
48
49
            use_bias=False,
            hidden_dropout=0.0,
50
            cond_embed_dim=8,
Will Berman's avatar
Will Berman committed
51
52
            micro_cond_encode_dim=2,
            micro_cond_embed_dim=10,
53
            encoder_hidden_size=8,
Will Berman's avatar
Will Berman committed
54
            vocab_size=32,
55
56
57
            codebook_size=8,
            in_channels=8,
            block_out_channels=8,
Will Berman's avatar
Will Berman committed
58
59
60
61
62
63
64
            num_res_blocks=1,
            downsample=True,
            upsample=True,
            block_num_heads=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            attention_dropout=0.0,
65
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
66
67
68
69
70
71
72
            layer_norm_eps=1e-06,
            ln_elementwise_affine=True,
        )
        scheduler = AmusedScheduler(mask_token_id=31)
        torch.manual_seed(0)
        vqvae = VQModel(
            act_fn="silu",
73
            block_out_channels=[8],
Dhruv Nair's avatar
Dhruv Nair committed
74
            down_block_types=["DownEncoderBlock2D"],
Will Berman's avatar
Will Berman committed
75
            in_channels=3,
76
77
78
79
            latent_channels=8,
            layers_per_block=1,
            norm_num_groups=8,
            num_vq_embeddings=8,
Will Berman's avatar
Will Berman committed
80
            out_channels=3,
81
            sample_size=8,
Dhruv Nair's avatar
Dhruv Nair committed
82
            up_block_types=["UpDecoderBlock2D"],
Will Berman's avatar
Will Berman committed
83
84
85
86
87
88
89
            mid_block_add_attention=False,
            lookup_from_codebook=True,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
90
91
            hidden_size=8,
            intermediate_size=8,
Will Berman's avatar
Will Berman committed
92
            layer_norm_eps=1e-05,
93
94
            num_attention_heads=1,
            num_hidden_layers=1,
Will Berman's avatar
Will Berman committed
95
96
            pad_token_id=1,
            vocab_size=1000,
97
            projection_dim=8,
Will Berman's avatar
Will Berman committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        )
        text_encoder = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        components = {
            "transformer": transformer,
            "scheduler": scheduler,
            "vqvae": vqvae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "output_type": "np",
            "height": 4,
            "width": 4,
        }
        return inputs

    def test_inference_batch_consistent(self, batch_sizes=[2]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)

    @unittest.skip("aMUSEd does not support lists of generators")
129
    def test_inference_batch_single_identical(self): ...
Will Berman's avatar
Will Berman committed
130
131
132


@slow
133
@require_torch_accelerator
Will Berman's avatar
Will Berman committed
134
135
class AmusedPipelineSlowTests(unittest.TestCase):
    def test_amused_256(self):
136
        pipe = AmusedPipeline.from_pretrained("amused/amused-256")
Will Berman's avatar
Will Berman committed
137
138
139
140
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
Dhruv Nair's avatar
Dhruv Nair committed
141
142
        expected_slice = np.array([0.4011, 0.3992, 0.379, 0.3856, 0.3772, 0.3711, 0.3919, 0.385, 0.3625])
        assert np.abs(image_slice - expected_slice).max() < 0.003
Will Berman's avatar
Will Berman committed
143
144

    def test_amused_256_fp16(self):
145
        pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
146
147
148
149
150
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()
        assert image.shape == (1, 256, 256, 3)
        expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
Dhruv Nair's avatar
Dhruv Nair committed
151
        assert np.abs(image_slice - expected_slice).max() < 0.007
Will Berman's avatar
Will Berman committed
152
153

    def test_amused_512(self):
154
        pipe = AmusedPipeline.from_pretrained("amused/amused-512")
Will Berman's avatar
Will Berman committed
155
156
157
158
159
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
160
161
        expected_slice = np.array([0.1199, 0.1171, 0.1229, 0.1188, 0.1210, 0.1147, 0.1260, 0.1346, 0.1152])
        assert np.abs(image_slice - expected_slice).max() < 0.003
Will Berman's avatar
Will Berman committed
162
163

    def test_amused_512_fp16(self):
164
        pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
Will Berman's avatar
Will Berman committed
165
166
167
168
169
        pipe.to(torch_device)
        image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
        image_slice = image[0, -3:, -3:, -1].flatten()

        assert image.shape == (1, 512, 512, 3)
Dhruv Nair's avatar
Dhruv Nair committed
170
171
        expected_slice = np.array([0.1509, 0.1492, 0.1531, 0.1485, 0.1501, 0.1465, 0.1581, 0.1690, 0.1499])
        assert np.abs(image_slice - expected_slice).max() < 0.003