test_if_superresolution.py 5.15 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
Patrick von Platen's avatar
Patrick von Platen committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import gc
Patrick von Platen's avatar
Patrick von Platen committed
17
18
19
20
21
22
import random
import unittest

import torch

from diffusers import IFSuperResolutionPipeline
23
from diffusers.models.attention_processor import AttnAddedKVProcessor
24
from diffusers.utils.import_utils import is_xformers_available
25
26
27
28
from diffusers.utils.testing_utils import (
    floats_tensor,
    load_numpy,
    require_accelerator,
Marc Sun's avatar
Marc Sun committed
29
    require_hf_hub_version_greater,
30
    require_torch_gpu,
Marc Sun's avatar
Marc Sun committed
31
    require_transformers_version_greater,
32
33
34
35
    skip_mps,
    slow,
    torch_device,
)
Patrick von Platen's avatar
Patrick von Platen committed
36
37

from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
38
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
Patrick von Platen's avatar
Patrick von Platen committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from . import IFPipelineTesterMixin


@skip_mps
class IFSuperResolutionPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase):
    pipeline_class = IFSuperResolutionPipeline
    params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"width", "height"}
    batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
    required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}

    def get_dummy_components(self):
        return self._get_superresolution_dummy_components()

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)

        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
65
            "output_type": "np",
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
        }

        return inputs

70
71
72
73
74
75
76
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forwardGenerator_pass(self):
        self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3)

Patrick von Platen's avatar
Patrick von Platen committed
77
78
79
    def test_save_load_optional_components(self):
        self._test_save_load_optional_components()

80
81
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
Patrick von Platen's avatar
Patrick von Platen committed
82
83
    def test_save_load_float16(self):
        # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
84
        super().test_save_load_float16(expected_max_diff=1e-1)
Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
93
94
95

    def test_attention_slicing_forward_pass(self):
        self._test_attention_slicing_forward_pass(expected_max_diff=1e-2)

    def test_save_load_local(self):
        self._test_save_load_local()

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(
            expected_max_diff=1e-2,
        )
96

Marc Sun's avatar
Marc Sun committed
97
98
99
100
101
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_save_load_dduf(self):
        super().test_save_load_dduf(atol=1e-2, rtol=1e-2)

102
103
104
105

@slow
@require_torch_gpu
class IFSuperResolutionPipelineSlowTests(unittest.TestCase):
106
107
108
109
110
111
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_if_superresolution(self):
        pipe = IFSuperResolutionPipeline.from_pretrained(
            "DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16
        )
        pipe.unet.set_attn_processor(AttnAddedKVProcessor())
        pipe.enable_model_cpu_offload()

        # Super resolution test
        torch.cuda.empty_cache()
        torch.cuda.reset_max_memory_allocated()
        torch.cuda.reset_peak_memory_stats()

        image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device)
        generator = torch.Generator(device="cpu").manual_seed(0)
        output = pipe(
            prompt="anime turtle",
            image=image,
            generator=generator,
            num_inference_steps=2,
            output_type="np",
        )

        image = output.images[0]

        assert image.shape == (256, 256, 3)

        mem_bytes = torch.cuda.max_memory_allocated()
        assert mem_bytes < 12 * 10**9

        expected_image = load_numpy(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy"
        )
        assert_mean_pixel_difference(image, expected_image)

        pipe.remove_all_hooks()