pipeline_repaint.py 7.18 KB
Newer Older
Revist's avatar
Revist committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Revist's avatar
Revist committed
17
18
19
20
21
22
23
24
25

import numpy as np
import torch

import PIL

from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import RePaintScheduler
26
from ...utils import PIL_INTERPOLATION, deprecate, logging
Revist's avatar
Revist committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.preprocess
def _preprocess_image(image: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(image, torch.Tensor):
        return image
    elif isinstance(image, PIL.Image.Image):
        image = [image]

    if isinstance(image[0], PIL.Image.Image):
        w, h = image[0].size
        w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32

        image = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[None, :] for i in image]
        image = np.concatenate(image, axis=0)
        image = np.array(image).astype(np.float32) / 255.0
        image = image.transpose(0, 3, 1, 2)
        image = 2.0 * image - 1.0
        image = torch.from_numpy(image)
    elif isinstance(image[0], torch.Tensor):
        image = torch.cat(image, dim=0)
Revist's avatar
Revist committed
51
52
53
    return image


54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
def _preprocess_mask(mask: Union[List, PIL.Image.Image, torch.Tensor]):
    if isinstance(mask, torch.Tensor):
        return mask
    elif isinstance(mask, PIL.Image.Image):
        mask = [mask]

    if isinstance(mask[0], PIL.Image.Image):
        w, h = mask[0].size
        w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
        mask = [np.array(m.convert("L").resize((w, h), resample=PIL_INTERPOLATION["nearest"]))[None, :] for m in mask]
        mask = np.concatenate(mask, axis=0)
        mask = mask.astype(np.float32) / 255.0
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)
    elif isinstance(mask[0], torch.Tensor):
        mask = torch.cat(mask, dim=0)
Revist's avatar
Revist committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
    return mask


class RePaintPipeline(DiffusionPipeline):
    unet: UNet2DModel
    scheduler: RePaintScheduler

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @torch.no_grad()
    def __call__(
        self,
85
86
        image: Union[torch.Tensor, PIL.Image.Image],
        mask_image: Union[torch.Tensor, PIL.Image.Image],
Revist's avatar
Revist committed
87
88
89
90
91
92
93
        num_inference_steps: int = 250,
        eta: float = 0.0,
        jump_length: int = 10,
        jump_n_sample: int = 10,
        generator: Optional[torch.Generator] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
94
        **kwargs,
Revist's avatar
Revist committed
95
96
97
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        Args:
98
            image (`torch.FloatTensor` or `PIL.Image.Image`):
Revist's avatar
Revist committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
                The original image to inpaint on.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
                The mask_image where 0.0 values define which part of the original image to inpaint (change).
            num_inference_steps (`int`, *optional*, defaults to 1000):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            eta (`float`):
                The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM
                and 1.0 is DDPM scheduler respectively.
            jump_length (`int`, *optional*, defaults to 10):
                The number of steps taken forward in time before going backward in time for a single jump ("j" in
                RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
            jump_n_sample (`int`, *optional*, defaults to 10):
                The number of times we will make forward time jump for a given chosen time sample. Take a look at
                Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
        """

129
130
131
132
133
134
135
136
        message = "Please use `image` instead of `original_image`."
        original_image = deprecate("original_image", "0.15.0", message, take_from=kwargs)
        original_image = original_image or image

        original_image = _preprocess_image(original_image)
        original_image = original_image.to(device=self.device, dtype=self.unet.dtype)
        mask_image = _preprocess_mask(mask_image)
        mask_image = mask_image.to(device=self.device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
137
138
139
140
141
142
143

        # sample gaussian noise to begin the loop
        image = torch.randn(
            original_image.shape,
            generator=generator,
            device=self.device,
        )
144
        image = image.to(device=self.device, dtype=self.unet.dtype)
Revist's avatar
Revist committed
145
146
147
148
149
150

        # set step values
        self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self.device)
        self.scheduler.eta = eta

        t_last = self.scheduler.timesteps[0] + 1
151
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
Revist's avatar
Revist committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            if t < t_last:
                # predict the noise residual
                model_output = self.unet(image, t).sample
                # compute previous image: x_t -> x_t-1
                image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample

            else:
                # compute the reverse: x_t-1 -> x_t
                image = self.scheduler.undo_step(image, t_last, generator)
            t_last = t

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)