scheduling_ddim.py 6.46 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

Patrick von Platen's avatar
Patrick von Platen committed
16
import numpy as np
Patrick von Platen's avatar
Patrick von Platen committed
17
18

from ..configuration_utils import ConfigMixin
Patrick von Platen's avatar
Patrick von Platen committed
19
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule
Patrick von Platen's avatar
Patrick von Platen committed
20
21


Patrick von Platen's avatar
Patrick von Platen committed
22
class DDIMScheduler(SchedulerMixin, ConfigMixin):
Patrick von Platen's avatar
Patrick von Platen committed
23
24
25
26
27
28
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
patil-suraj's avatar
patil-suraj committed
29
30
        trained_betas=None,
        timestep_values=None,
Patrick von Platen's avatar
Patrick von Platen committed
31
        clip_predicted_image=True,
Patrick von Platen's avatar
Patrick von Platen committed
32
        tensor_format="np",
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
38
39
40
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
Patrick von Platen's avatar
Patrick von Platen committed
41
        self.timesteps = int(timesteps)
anton-l's avatar
anton-l committed
42
        self.timestep_values = timestep_values  # save the fixed timestep values for BDDM
Patrick von Platen's avatar
Patrick von Platen committed
43
44
        self.clip_image = clip_predicted_image

45
        if beta_schedule == "linear":
Patrick von Platen's avatar
Patrick von Platen committed
46
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
Patrick von Platen's avatar
Patrick von Platen committed
47
48
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
Patrick von Platen's avatar
Patrick von Platen committed
49
            self.betas = betas_for_alpha_bar(
Patrick von Platen's avatar
Patrick von Platen committed
50
51
52
53
54
55
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

Patrick von Platen's avatar
Patrick von Platen committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

    #        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
    # TODO(PVP) - check how much of these is actually necessary!
    # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
    # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
    #        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
    #        if variance_type == "fixed_small":
    #            log_variance = torch.log(variance.clamp(min=1e-20))
    #        elif variance_type == "fixed_large":
    #            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
    #
    #
    #        self.register_buffer("log_variance", log_variance.to(torch.float32))
Patrick von Platen's avatar
Patrick von Platen committed
74

anton-l's avatar
anton-l committed
75
76
77
78
79
80
81
82
83
    # def rescale_betas(self, num_timesteps):
    #     # GLIDE scaling
    #     if self.beta_schedule == "linear":
    #         scale = self.timesteps / num_timesteps
    #         self.betas = linear_beta_schedule(
    #             num_timesteps, beta_start=self.beta_start * scale, beta_end=self.beta_end * scale
    #         )
    #         self.alphas = 1.0 - self.betas
    #         self.alphas_cumprod = np.cumprod(self.alphas, axis=0)
anton-l's avatar
anton-l committed
84

Patrick von Platen's avatar
Patrick von Platen committed
85
86
87
88
89
90
91
92
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
Patrick von Platen's avatar
Patrick von Platen committed
93
            return self.one
Patrick von Platen's avatar
Patrick von Platen committed
94
95
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
96
97
98
    def get_orig_t(self, t, num_inference_steps):
        if t < 0:
            return -1
Patrick von Platen's avatar
Patrick von Platen committed
99
        return self.timesteps // num_inference_steps * t
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
    def get_variance(self, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
102
103
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
104
105
106
107
108
109
110
111
112
113

        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

anton-l's avatar
anton-l committed
114
    def step(self, residual, image, t, num_inference_steps, eta, use_clipped_residual=False):
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
118
119
120
121
122
123
124
125
126
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"

        # 1. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
127
128
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
129
130
131
132
133
134
135
136

        # 2. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
137
        pred_original_image = (image - beta_prod_t ** (0.5) * residual) / alpha_prod_t ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140

        # 4. Clip "predicted x_0"
        if self.clip_image:
Patrick von Platen's avatar
Patrick von Platen committed
141
            pred_original_image = self.clip(pred_original_image, -1, 1)
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144
145

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
146
        std_dev_t = eta * variance ** (0.5)
Patrick von Platen's avatar
Patrick von Platen committed
147

anton-l's avatar
anton-l committed
148
149
150
151
        if use_clipped_residual:
            # the residual is always re-derived from the clipped x_0 in GLIDE
            residual = (image - alpha_prod_t ** (0.5) * pred_original_image) / beta_prod_t ** (0.5)

Patrick von Platen's avatar
Patrick von Platen committed
152
        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
153
        pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * residual
Patrick von Platen's avatar
Patrick von Platen committed
154
155

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
Patrick von Platen's avatar
Patrick von Platen committed
156
        pred_prev_image = alpha_prod_t_prev ** (0.5) * pred_original_image + pred_image_direction
Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160

        return pred_prev_image

    def __len__(self):
Patrick von Platen's avatar
Patrick von Platen committed
161
        return self.timesteps