attention.py 12.3 KB
Newer Older
1
import math
Patrick von Platen's avatar
Patrick von Platen committed
2
from inspect import isfunction
3
4

import torch
Patrick von Platen's avatar
Patrick von Platen committed
5
import torch.nn.functional as F
6
7
8
from torch import nn


Patrick von Platen's avatar
Patrick von Platen committed
9
# unet_grad_tts.py
Patrick von Platen's avatar
Patrick von Platen committed
10
# TODO(Patrick) - weird linear attention layer. Check with: https://github.com/huawei-noah/Speech-Backbones/issues/15
Patrick von Platen's avatar
Patrick von Platen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class LinearAttention(torch.nn.Module):
    def __init__(self, dim, heads=4, dim_head=32):
        super(LinearAttention, self).__init__()
        self.heads = heads
        self.dim_head = dim_head
        hidden_dim = dim_head * heads
        self.to_qkv = torch.nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
        self.to_out = torch.nn.Conv2d(hidden_dim, dim, 1)

    def forward(self, x):
        b, c, h, w = x.shape
        qkv = self.to_qkv(x)
        q, k, v = (
            qkv.reshape(b, 3, self.heads, self.dim_head, h, w)
            .permute(1, 0, 2, 3, 4, 5)
            .reshape(3, b, self.heads, self.dim_head, -1)
        )
        k = k.softmax(dim=-1)
        context = torch.einsum("bhdn,bhen->bhde", k, v)
        out = torch.einsum("bhde,bhdn->bhen", context, q)
        out = out.reshape(b, self.heads, self.dim_head, h, w).reshape(b, self.heads * self.dim_head, h, w)
        return self.to_out(out)

34

Patrick von Platen's avatar
Patrick von Platen committed
35
# the main attention block that is used for all models
Patrick von Platen's avatar
Patrick von Platen committed
36
37
38
39
40
41
42
43
44
45
46
47
class AttentionBlock(nn.Module):
    """
    An attention block that allows spatial positions to attend to each other.

    Originally ported from here, but adapted to the N-d case.
    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
    """

    def __init__(
        self,
        channels,
        num_heads=1,
Patrick von Platen's avatar
Patrick von Platen committed
48
        num_head_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
49
        num_groups=32,
Patrick von Platen's avatar
Patrick von Platen committed
50
        encoder_channels=None,
Patrick von Platen's avatar
Patrick von Platen committed
51
        overwrite_qkv=False,
Patrick von Platen's avatar
Patrick von Platen committed
52
53
        overwrite_linear=False,
        rescale_output_factor=1.0,
Patrick von Platen's avatar
Patrick von Platen committed
54
55
56
    ):
        super().__init__()
        self.channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
57
        if num_head_channels is None:
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
62
63
            self.num_heads = num_heads
        else:
            assert (
                channels % num_head_channels == 0
            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
            self.num_heads = channels // num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
64

Patrick von Platen's avatar
Patrick von Platen committed
65
66
        self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-5, affine=True)
        self.qkv = nn.Conv1d(channels, channels * 3, 1)
Patrick von Platen's avatar
Patrick von Platen committed
67
        self.n_heads = self.num_heads
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.rescale_output_factor = rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
69
70

        if encoder_channels is not None:
Patrick von Platen's avatar
Patrick von Platen committed
71
            self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1)
Patrick von Platen's avatar
Patrick von Platen committed
72

73
        self.proj = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
74

Patrick von Platen's avatar
Patrick von Platen committed
75
        self.overwrite_qkv = overwrite_qkv
Anton Lozhkov's avatar
Anton Lozhkov committed
76
77
        self.overwrite_linear = overwrite_linear

Patrick von Platen's avatar
Patrick von Platen committed
78
79
        if overwrite_qkv:
            in_channels = channels
Patrick von Platen's avatar
Patrick von Platen committed
80
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
84
            self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
            self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
Anton Lozhkov's avatar
Anton Lozhkov committed
85
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
86
87
88
89
90
91
92
            num_groups = min(channels // 4, 32)
            self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6)
            self.NIN_0 = NIN(channels, channels)
            self.NIN_1 = NIN(channels, channels)
            self.NIN_2 = NIN(channels, channels)
            self.NIN_3 = NIN(channels, channels)

Patrick von Platen's avatar
Patrick von Platen committed
93
            self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6)
Anton Lozhkov's avatar
Anton Lozhkov committed
94
95
        else:
            self.proj_out = zero_module(nn.Conv1d(channels, channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
96

Patrick von Platen's avatar
Patrick von Platen committed
97
        self.is_overwritten = False
98

Patrick von Platen's avatar
Patrick von Platen committed
99
100
    def set_weights(self, module):
        if self.overwrite_qkv:
Patrick von Platen's avatar
Patrick von Platen committed
101
102
103
            qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[
                :, :, :, 0
            ]
Patrick von Platen's avatar
Patrick von Platen committed
104
            qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0)
Patrick von Platen's avatar
Patrick von Platen committed
105

Patrick von Platen's avatar
Patrick von Platen committed
106
107
108
            self.qkv.weight.data = qkv_weight
            self.qkv.bias.data = qkv_bias

Patrick von Platen's avatar
Patrick von Platen committed
109
            proj_out = zero_module(nn.Conv1d(self.channels, self.channels, 1))
Patrick von Platen's avatar
Patrick von Platen committed
110
111
            proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0]
            proj_out.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
112

113
            self.proj = proj_out
Patrick von Platen's avatar
Patrick von Platen committed
114
        elif self.overwrite_linear:
Patrick von Platen's avatar
Patrick von Platen committed
115
116
117
            self.qkv.weight.data = torch.concat(
                [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0
            )[:, :, None]
Patrick von Platen's avatar
Patrick von Platen committed
118
119
            self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0)

120
121
            self.proj.weight.data = self.NIN_3.W.data.T[:, :, None]
            self.proj.bias.data = self.NIN_3.b.data
Patrick von Platen's avatar
Patrick von Platen committed
122

Patrick von Platen's avatar
Patrick von Platen committed
123
124
            self.norm.weight.data = self.GroupNorm_0.weight.data
            self.norm.bias.data = self.GroupNorm_0.bias.data
Anton Lozhkov's avatar
Anton Lozhkov committed
125
126
127
        else:
            self.proj.weight.data = module.proj_out.weight.data
            self.proj.bias.data = module.proj_out.bias.data
Patrick von Platen's avatar
Patrick von Platen committed
128

Patrick von Platen's avatar
Patrick von Platen committed
129
    def forward(self, x, encoder_out=None):
Anton Lozhkov's avatar
Anton Lozhkov committed
130
        if not self.is_overwritten:
Patrick von Platen's avatar
Patrick von Platen committed
131
132
133
134
135
            self.set_weights(self)
            self.is_overwritten = True

        b, c, *spatial = x.shape
        hid_states = self.norm(x).view(b, c, -1)
Patrick von Platen's avatar
Patrick von Platen committed
136

Patrick von Platen's avatar
Patrick von Platen committed
137
        qkv = self.qkv(hid_states)
Patrick von Platen's avatar
Patrick von Platen committed
138
139
140
141
        bs, width, length = qkv.shape
        assert width % (3 * self.n_heads) == 0
        ch = width // (3 * self.n_heads)
        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
Patrick von Platen's avatar
Patrick von Platen committed
142
143
144

        if encoder_out is not None:
            encoder_kv = self.encoder_kv(encoder_out)
Patrick von Platen's avatar
Patrick von Platen committed
145
146
147
148
            assert encoder_kv.shape[1] == self.n_heads * ch * 2
            ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1)
            k = torch.cat([ek, k], dim=-1)
            v = torch.cat([ev, v], dim=-1)
Patrick von Platen's avatar
Patrick von Platen committed
149

Patrick von Platen's avatar
Patrick von Platen committed
150
151
152
        scale = 1 / math.sqrt(math.sqrt(ch))
        weight = torch.einsum("bct,bcs->bts", q * scale, k * scale)  # More stable with f16 than dividing afterwards
        weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
Patrick von Platen's avatar
Patrick von Platen committed
153

Patrick von Platen's avatar
Patrick von Platen committed
154
        a = torch.einsum("bts,bcs->bct", weight, v)
Patrick von Platen's avatar
Patrick von Platen committed
155
156
        h = a.reshape(bs, -1, length)

157
        h = self.proj(h)
Patrick von Platen's avatar
Patrick von Platen committed
158
        h = h.reshape(b, c, *spatial)
Patrick von Platen's avatar
Patrick von Platen committed
159

Patrick von Platen's avatar
Patrick von Platen committed
160
        result = x + h
Patrick von Platen's avatar
Patrick von Platen committed
161

Patrick von Platen's avatar
Patrick von Platen committed
162
        result = result / self.rescale_output_factor
Patrick von Platen's avatar
Patrick von Platen committed
163

Patrick von Platen's avatar
Patrick von Platen committed
164
        return result
Patrick von Platen's avatar
Patrick von Platen committed
165
166


Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
class SpatialTransformer(nn.Module):
    """
    Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
    standard transformer action. Finally, reshape to image
    """

    def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None):
        super().__init__()
        self.in_channels = in_channels
        inner_dim = n_heads * d_head
        self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)

        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)

        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
                for d in range(depth)
            ]
        )

        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))

    def forward(self, x, context=None):
        # note: if no context is given, cross-attention defaults to self-attention
        b, c, h, w = x.shape
        x_in = x
        x = self.norm(x)
        x = self.proj_in(x)
        x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
        for block in self.transformer_blocks:
            x = block(x, context=context)
        x = x.reshape(b, h, w, c).permute(0, 3, 1, 2)
        x = self.proj_out(x)
        return x + x_in


class BasicTransformerBlock(nn.Module):
    def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True):
        super().__init__()
        self.attn1 = CrossAttention(
            query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is a self-attention
        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
        self.attn2 = CrossAttention(
            query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
        )  # is self-attn if context is none
        self.norm1 = nn.LayerNorm(dim)
        self.norm2 = nn.LayerNorm(dim)
        self.norm3 = nn.LayerNorm(dim)
        self.checkpoint = checkpoint

    def forward(self, x, context=None):
        x = self.attn1(self.norm1(x)) + x
        x = self.attn2(self.norm2(x), context=context) + x
        x = self.ff(self.norm3(x)) + x
        return x


class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = default(context_dim, query_dim)

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def forward(self, x, context=None, mask=None):
        batch_size, sequence_length, dim = x.shape

        h = self.heads

        q = self.to_q(x)
        context = default(context, x)
        k = self.to_k(context)
        v = self.to_v(context)

        q = self.reshape_heads_to_batch_dim(q)
        k = self.reshape_heads_to_batch_dim(k)
        v = self.reshape_heads_to_batch_dim(v)

        sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale

        if exists(mask):
            mask = mask.reshape(batch_size, -1)
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = mask[:, None, :].repeat(h, 1, 1)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        attn = sim.softmax(dim=-1)

        out = torch.einsum("b i j, b j d -> b i d", attn, v)
        out = self.reshape_batch_dim_to_heads(out)
        return self.to_out(out)


class FeedForward(nn.Module):
    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
        super().__init__()
        inner_dim = int(dim * mult)
        dim_out = default(dim_out, dim)
        project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim)

        self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))

    def forward(self, x):
        return self.net(x)
Patrick von Platen's avatar
Patrick von Platen committed
296

Patrick von Platen's avatar
Patrick von Platen committed
297

Patrick von Platen's avatar
Patrick von Platen committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# TODO(Patrick) - this can and should be removed
def zero_module(module):
    """
    Zero out the parameters of a module and return it.
    """
    for p in module.parameters():
        p.detach().zero_()
    return module


# TODO(Patrick) - remove once all weights have been converted -> not needed anymore then
class NIN(nn.Module):
    def __init__(self, in_dim, num_units, init_scale=0.1):
        super().__init__()
        self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True)
        self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True)
Patrick von Platen's avatar
Patrick von Platen committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334


def exists(val):
    return val is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# feedforward
class GEGLU(nn.Module):
    def __init__(self, dim_in, dim_out):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2)

    def forward(self, x):
        x, gate = self.proj(x).chunk(2, dim=-1)
        return x * F.gelu(gate)