"docs/vscode:/vscode.git/clone" did not exist on "8125372bbdf2c35a6ac7361b6343d9a3d175ca1c"
convert_sd3_to_diffusers.py 15.9 KB
Newer Older
YiYi Xu's avatar
YiYi Xu committed
1
2
3
4
5
6
7
8
9
import argparse
from contextlib import nullcontext

import safetensors.torch
import torch
from accelerate import init_empty_weights

from diffusers import AutoencoderKL, SD3Transformer2DModel
from diffusers.loaders.single_file_utils import convert_ldm_vae_checkpoint
10
from diffusers.models.model_loading_utils import load_model_dict_into_meta
YiYi Xu's avatar
YiYi Xu committed
11
12
13
from diffusers.utils.import_utils import is_accelerate_available


SahilCarterr's avatar
SahilCarterr committed
14
CTX = init_empty_weights if is_accelerate_available() else nullcontext
YiYi Xu's avatar
YiYi Xu committed
15
16
17
18

parser = argparse.ArgumentParser()
parser.add_argument("--checkpoint_path", type=str)
parser.add_argument("--output_path", type=str)
YiYi Xu's avatar
YiYi Xu committed
19
parser.add_argument("--dtype", type=str)
YiYi Xu's avatar
YiYi Xu committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

args = parser.parse_args()


def load_original_checkpoint(ckpt_path):
    original_state_dict = safetensors.torch.load_file(ckpt_path)
    keys = list(original_state_dict.keys())
    for k in keys:
        if "model.diffusion_model." in k:
            original_state_dict[k.replace("model.diffusion_model.", "")] = original_state_dict.pop(k)

    return original_state_dict


# in SD3 original implementation of AdaLayerNormContinuous, it split linear projection output into shift, scale;
# while in diffusers it split into scale, shift. Here we swap the linear projection weights in order to be able to use diffusers implementation
def swap_scale_shift(weight, dim):
    shift, scale = weight.chunk(2, dim=0)
    new_weight = torch.cat([scale, shift], dim=0)
    return new_weight


YiYi Xu's avatar
YiYi Xu committed
42
43
44
def convert_sd3_transformer_checkpoint_to_diffusers(
    original_state_dict, num_layers, caption_projection_dim, dual_attention_layers, has_qk_norm
):
YiYi Xu's avatar
YiYi Xu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    converted_state_dict = {}

    # Positional and patch embeddings.
    converted_state_dict["pos_embed.pos_embed"] = original_state_dict.pop("pos_embed")
    converted_state_dict["pos_embed.proj.weight"] = original_state_dict.pop("x_embedder.proj.weight")
    converted_state_dict["pos_embed.proj.bias"] = original_state_dict.pop("x_embedder.proj.bias")

    # Timestep embeddings.
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.weight"] = original_state_dict.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_1.bias"] = original_state_dict.pop(
        "t_embedder.mlp.0.bias"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.weight"] = original_state_dict.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.timestep_embedder.linear_2.bias"] = original_state_dict.pop(
        "t_embedder.mlp.2.bias"
    )

    # Context projections.
    converted_state_dict["context_embedder.weight"] = original_state_dict.pop("context_embedder.weight")
    converted_state_dict["context_embedder.bias"] = original_state_dict.pop("context_embedder.bias")

    # Pooled context projection.
    converted_state_dict["time_text_embed.text_embedder.linear_1.weight"] = original_state_dict.pop(
        "y_embedder.mlp.0.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_1.bias"] = original_state_dict.pop(
        "y_embedder.mlp.0.bias"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.weight"] = original_state_dict.pop(
        "y_embedder.mlp.2.weight"
    )
    converted_state_dict["time_text_embed.text_embedder.linear_2.bias"] = original_state_dict.pop(
        "y_embedder.mlp.2.bias"
    )

    # Transformer blocks 🎸.
    for i in range(num_layers):
        # Q, K, V
        sample_q, sample_k, sample_v = torch.chunk(
            original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.weight"), 3, dim=0
        )
        context_q, context_k, context_v = torch.chunk(
            original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.weight"), 3, dim=0
        )
        sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
            original_state_dict.pop(f"joint_blocks.{i}.x_block.attn.qkv.bias"), 3, dim=0
        )
        context_q_bias, context_k_bias, context_v_bias = torch.chunk(
            original_state_dict.pop(f"joint_blocks.{i}.context_block.attn.qkv.bias"), 3, dim=0
        )

        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.weight"] = torch.cat([sample_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_q.bias"] = torch.cat([sample_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.weight"] = torch.cat([sample_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_k.bias"] = torch.cat([sample_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.weight"] = torch.cat([sample_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.to_v.bias"] = torch.cat([sample_v_bias])

        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.weight"] = torch.cat([context_q])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_q_proj.bias"] = torch.cat([context_q_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.weight"] = torch.cat([context_k])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_k_proj.bias"] = torch.cat([context_k_bias])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.weight"] = torch.cat([context_v])
        converted_state_dict[f"transformer_blocks.{i}.attn.add_v_proj.bias"] = torch.cat([context_v_bias])

YiYi Xu's avatar
YiYi Xu committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        # qk norm
        if has_qk_norm:
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_q.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.x_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_k.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.x_block.attn.ln_k.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_q.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.attn.ln_q.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.norm_added_k.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.attn.ln_k.weight"
            )

YiYi Xu's avatar
YiYi Xu committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
        # output projections.
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.weight"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.attn.to_out.0.bias"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.attn.proj.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.attn.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn.to_add_out.bias"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.attn.proj.bias"
            )

YiYi Xu's avatar
YiYi Xu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        # attn2
        if i in dual_attention_layers:
            # Q, K, V
            sample_q2, sample_k2, sample_v2 = torch.chunk(
                original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.weight"), 3, dim=0
            )
            sample_q2_bias, sample_k2_bias, sample_v2_bias = torch.chunk(
                original_state_dict.pop(f"joint_blocks.{i}.x_block.attn2.qkv.bias"), 3, dim=0
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.weight"] = torch.cat([sample_q2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_q.bias"] = torch.cat([sample_q2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.weight"] = torch.cat([sample_k2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_k.bias"] = torch.cat([sample_k2_bias])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.weight"] = torch.cat([sample_v2])
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_v.bias"] = torch.cat([sample_v2_bias])

            # qk norm
            if has_qk_norm:
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_q.weight"] = original_state_dict.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_q.weight"
                )
                converted_state_dict[f"transformer_blocks.{i}.attn2.norm_k.weight"] = original_state_dict.pop(
                    f"joint_blocks.{i}.x_block.attn2.ln_k.weight"
                )

            # output projections.
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.attn2.to_out.0.bias"] = original_state_dict.pop(
                f"joint_blocks.{i}.x_block.attn2.proj.bias"
            )

YiYi Xu's avatar
YiYi Xu committed
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        # norms.
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.weight"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.norm1.linear.bias"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.adaLN_modulation.1.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"
            )
        else:
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.weight"] = swap_scale_shift(
                original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.weight"),
                dim=caption_projection_dim,
            )
            converted_state_dict[f"transformer_blocks.{i}.norm1_context.linear.bias"] = swap_scale_shift(
                original_state_dict.pop(f"joint_blocks.{i}.context_block.adaLN_modulation.1.bias"),
                dim=caption_projection_dim,
            )

        # ffs.
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.weight"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.0.proj.bias"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.mlp.fc1.bias"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.weight"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.weight"
        )
        converted_state_dict[f"transformer_blocks.{i}.ff.net.2.bias"] = original_state_dict.pop(
            f"joint_blocks.{i}.x_block.mlp.fc2.bias"
        )
        if not (i == num_layers - 1):
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.0.proj.bias"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.mlp.fc1.bias"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.weight"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.weight"
            )
            converted_state_dict[f"transformer_blocks.{i}.ff_context.net.2.bias"] = original_state_dict.pop(
                f"joint_blocks.{i}.context_block.mlp.fc2.bias"
            )

    # Final blocks.
    converted_state_dict["proj_out.weight"] = original_state_dict.pop("final_layer.linear.weight")
    converted_state_dict["proj_out.bias"] = original_state_dict.pop("final_layer.linear.bias")
    converted_state_dict["norm_out.linear.weight"] = swap_scale_shift(
        original_state_dict.pop("final_layer.adaLN_modulation.1.weight"), dim=caption_projection_dim
    )
    converted_state_dict["norm_out.linear.bias"] = swap_scale_shift(
        original_state_dict.pop("final_layer.adaLN_modulation.1.bias"), dim=caption_projection_dim
    )

    return converted_state_dict


def is_vae_in_checkpoint(original_state_dict):
    return ("first_stage_model.decoder.conv_in.weight" in original_state_dict) and (
        "first_stage_model.encoder.conv_in.weight" in original_state_dict
    )


YiYi Xu's avatar
YiYi Xu committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
def get_attn2_layers(state_dict):
    attn2_layers = []
    for key in state_dict.keys():
        if "attn2." in key:
            # Extract the layer number from the key
            layer_num = int(key.split(".")[1])
            attn2_layers.append(layer_num)
    return tuple(sorted(set(attn2_layers)))


def get_pos_embed_max_size(state_dict):
    num_patches = state_dict["pos_embed"].shape[1]
    pos_embed_max_size = int(num_patches**0.5)
    return pos_embed_max_size


def get_caption_projection_dim(state_dict):
    caption_projection_dim = state_dict["context_embedder.weight"].shape[0]
    return caption_projection_dim


YiYi Xu's avatar
YiYi Xu committed
268
269
def main(args):
    original_ckpt = load_original_checkpoint(args.checkpoint_path)
YiYi Xu's avatar
YiYi Xu committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    original_dtype = next(iter(original_ckpt.values())).dtype

    # Initialize dtype with a default value
    dtype = None

    if args.dtype is None:
        dtype = original_dtype
    elif args.dtype == "fp16":
        dtype = torch.float16
    elif args.dtype == "bf16":
        dtype = torch.bfloat16
    elif args.dtype == "fp32":
        dtype = torch.float32
    else:
        raise ValueError(f"Unsupported dtype: {args.dtype}")

    if dtype != original_dtype:
        print(
            f"Checkpoint dtype {original_dtype} does not match requested dtype {dtype}. This can lead to unexpected results, proceed with caution."
        )

YiYi Xu's avatar
YiYi Xu committed
291
    num_layers = list(set(int(k.split(".", 2)[1]) for k in original_ckpt if "joint_blocks" in k))[-1] + 1  # noqa: C401
YiYi Xu's avatar
YiYi Xu committed
292
293
294
295
296
297
298
299
300
301
302

    caption_projection_dim = get_caption_projection_dim(original_ckpt)

    # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
    attn2_layers = get_attn2_layers(original_ckpt)

    # sd3.5 use qk norm("rms_norm")
    has_qk_norm = any("ln_q" in key for key in original_ckpt.keys())

    # sd3.5 2b use pox_embed_max_size=384 and sd3.0 and sd3.5 8b use 192
    pos_embed_max_size = get_pos_embed_max_size(original_ckpt)
YiYi Xu's avatar
YiYi Xu committed
303
304

    converted_transformer_state_dict = convert_sd3_transformer_checkpoint_to_diffusers(
YiYi Xu's avatar
YiYi Xu committed
305
        original_ckpt, num_layers, caption_projection_dim, attn2_layers, has_qk_norm
YiYi Xu's avatar
YiYi Xu committed
306
307
308
309
    )

    with CTX():
        transformer = SD3Transformer2DModel(
YiYi Xu's avatar
YiYi Xu committed
310
            sample_size=128,
YiYi Xu's avatar
YiYi Xu committed
311
312
313
314
315
            patch_size=2,
            in_channels=16,
            joint_attention_dim=4096,
            num_layers=num_layers,
            caption_projection_dim=caption_projection_dim,
YiYi Xu's avatar
YiYi Xu committed
316
317
318
319
            num_attention_heads=num_layers,
            pos_embed_max_size=pos_embed_max_size,
            qk_norm="rms_norm" if has_qk_norm else None,
            dual_attention_layers=attn2_layers,
YiYi Xu's avatar
YiYi Xu committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        )
    if is_accelerate_available():
        load_model_dict_into_meta(transformer, converted_transformer_state_dict)
    else:
        transformer.load_state_dict(converted_transformer_state_dict, strict=True)

    print("Saving SD3 Transformer in Diffusers format.")
    transformer.to(dtype).save_pretrained(f"{args.output_path}/transformer")

    if is_vae_in_checkpoint(original_ckpt):
        with CTX():
            vae = AutoencoderKL.from_config(
                "stabilityai/stable-diffusion-xl-base-1.0",
                subfolder="vae",
                latent_channels=16,
                use_post_quant_conv=False,
                use_quant_conv=False,
                scaling_factor=1.5305,
                shift_factor=0.0609,
            )
        converted_vae_state_dict = convert_ldm_vae_checkpoint(original_ckpt, vae.config)
        if is_accelerate_available():
            load_model_dict_into_meta(vae, converted_vae_state_dict)
        else:
            vae.load_state_dict(converted_vae_state_dict, strict=True)

        print("Saving SD3 Autoencoder in Diffusers format.")
        vae.to(dtype).save_pretrained(f"{args.output_path}/vae")


if __name__ == "__main__":
    main(args)