convert_sana_controlnet_to_diffusers.py 9.07 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#!/usr/bin/env python
from __future__ import annotations

import argparse
from contextlib import nullcontext

import torch
from accelerate import init_empty_weights

from diffusers import (
    SanaControlNetModel,
)
13
from diffusers.models.model_loading_utils import load_model_dict_into_meta
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
from diffusers.utils.import_utils import is_accelerate_available


CTX = init_empty_weights if is_accelerate_available else nullcontext


def main(args):
    file_path = args.orig_ckpt_path

    all_state_dict = torch.load(file_path, weights_only=True)
    state_dict = all_state_dict.pop("state_dict")
    converted_state_dict = {}

    # Patch embeddings.
    converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight")
    converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias")

    # Caption projection.
    converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight")
    converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias")
    converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight")
    converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias")

    # AdaLN-single LN
    converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop(
        "t_embedder.mlp.0.weight"
    )
    converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias")
    converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop(
        "t_embedder.mlp.2.weight"
    )
    converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias")

    # Shared norm.
    converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight")
    converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias")

    # y norm
    converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight")

    # Positional embedding interpolation scale.
    interpolation_scale = {512: None, 1024: None, 2048: 1.0, 4096: 2.0}

    # ControlNet Input Projection.
    converted_state_dict["input_block.weight"] = state_dict.pop("controlnet.0.before_proj.weight")
    converted_state_dict["input_block.bias"] = state_dict.pop("controlnet.0.before_proj.bias")

    for depth in range(7):
        # Transformer blocks.
        converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.scale_shift_table"
        )

        # Linear Attention is all you need 🤘
        # Self attention.
        q, k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.attn.qkv.weight"), 3, dim=0)
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v
        # Projection.
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.attn.proj.bias"
        )

        # Feed-forward.
        converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.mlp.inverted_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.mlp.depth_conv.conv.bias"
        )
        converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.mlp.point_conv.conv.weight"
        )

        # Cross-attention.
        q = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.weight")
        q_bias = state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.q_linear.bias")
        k, v = torch.chunk(state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.weight"), 2, dim=0)
        k_bias, v_bias = torch.chunk(
            state_dict.pop(f"controlnet.{depth}.copied_block.cross_attn.kv_linear.bias"), 2, dim=0
        )

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias

        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.cross_attn.proj.weight"
        )
        converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop(
            f"controlnet.{depth}.copied_block.cross_attn.proj.bias"
        )

        # ControlNet After Projection
        converted_state_dict[f"controlnet_blocks.{depth}.weight"] = state_dict.pop(
            f"controlnet.{depth}.after_proj.weight"
        )
        converted_state_dict[f"controlnet_blocks.{depth}.bias"] = state_dict.pop(f"controlnet.{depth}.after_proj.bias")

    # ControlNet
    with CTX():
        controlnet = SanaControlNetModel(
            num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"],
            attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"],
            num_layers=model_kwargs[args.model_type]["num_layers"],
            num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"],
            cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"],
            cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"],
            caption_channels=2304,
            sample_size=args.image_size // 32,
            interpolation_scale=interpolation_scale[args.image_size],
        )

    if is_accelerate_available():
        load_model_dict_into_meta(controlnet, converted_state_dict)
    else:
        controlnet.load_state_dict(converted_state_dict, strict=True, assign=True)

    num_model_params = sum(p.numel() for p in controlnet.parameters())
    print(f"Total number of controlnet parameters: {num_model_params}")

    controlnet = controlnet.to(weight_dtype)
    controlnet.load_state_dict(converted_state_dict, strict=True)

    print(f"Saving Sana ControlNet in Diffusers format in {args.dump_path}.")
    controlnet.save_pretrained(args.dump_path)


DTYPE_MAPPING = {
    "fp32": torch.float32,
    "fp16": torch.float16,
    "bf16": torch.bfloat16,
}

VARIANT_MAPPING = {
    "fp32": None,
    "fp16": "fp16",
    "bf16": "bf16",
}


if __name__ == "__main__":
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--orig_ckpt_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
    )
    parser.add_argument(
        "--image_size",
        default=1024,
        type=int,
        choices=[512, 1024, 2048, 4096],
        required=False,
        help="Image size of pretrained model, 512, 1024, 2048 or 4096.",
    )
    parser.add_argument(
        "--model_type",
        default="SanaMS_1600M_P1_ControlNet_D7",
        type=str,
        choices=["SanaMS_1600M_P1_ControlNet_D7", "SanaMS_600M_P1_ControlNet_D7"],
    )
    parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.")
    parser.add_argument("--dtype", default="fp16", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.")

    args = parser.parse_args()

    model_kwargs = {
        "SanaMS_1600M_P1_ControlNet_D7": {
            "num_attention_heads": 70,
            "attention_head_dim": 32,
            "num_cross_attention_heads": 20,
            "cross_attention_head_dim": 112,
            "cross_attention_dim": 2240,
            "num_layers": 7,
        },
        "SanaMS_600M_P1_ControlNet_D7": {
            "num_attention_heads": 36,
            "attention_head_dim": 32,
            "num_cross_attention_heads": 16,
            "cross_attention_head_dim": 72,
            "cross_attention_dim": 1152,
            "num_layers": 7,
        },
    }

    device = "cuda" if torch.cuda.is_available() else "cpu"
    weight_dtype = DTYPE_MAPPING[args.dtype]
    variant = VARIANT_MAPPING[args.dtype]

    main(args)