hub_utils.py 25.4 KB
Newer Older
anton-l's avatar
anton-l committed
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
anton-l's avatar
anton-l committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import json
anton-l's avatar
anton-l committed
18
import os
19
import re
20
import sys
21
import tempfile
22
import traceback
23
import warnings
anton-l's avatar
anton-l committed
24
from pathlib import Path
25
from typing import Dict, List, Optional, Union
26
from uuid import uuid4
anton-l's avatar
anton-l committed
27

28
29
30
31
32
from huggingface_hub import (
    ModelCard,
    ModelCardData,
    create_repo,
    hf_hub_download,
33
34
    model_info,
    snapshot_download,
35
36
    upload_folder,
)
37
from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
38
from huggingface_hub.file_download import REGEX_COMMIT_HASH
39
40
41
42
43
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    is_jinja_available,
44
    validate_hf_hub_args,
45
46
47
)
from packaging import version
from requests import HTTPError
anton-l's avatar
anton-l committed
48

49
from .. import __version__
50
51
52
53
54
55
from .constants import (
    DEPRECATED_REVISION_ARGS,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
)
56
57
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
58
59
60
61
62
63
64
65
    _flax_version,
    _jax_version,
    _onnxruntime_version,
    _torch_version,
    is_flax_available,
    is_onnx_available,
    is_torch_available,
)
66
from .logging import get_logger
67
68


69
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
70

71
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
72
73
74
75
76
77
78
79
SESSION_ID = uuid4().hex


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
80
    if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        return ua + "; telemetry/off"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_flax_available():
        ua += f"; jax/{_jax_version}"
        ua += f"; flax/{_flax_version}"
    if is_onnx_available():
        ua += f"; onnxruntime/{_onnxruntime_version}"
    # CI will set this value to True
    if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua
anton-l's avatar
anton-l committed
97
98


99
def load_or_create_model_card(
100
101
102
103
104
105
106
107
108
109
    repo_id_or_path: str = None,
    token: Optional[str] = None,
    is_pipeline: bool = False,
    from_training: bool = False,
    model_description: Optional[str] = None,
    base_model: str = None,
    prompt: Optional[str] = None,
    license: Optional[str] = None,
    widget: Optional[List[dict]] = None,
    inference: Optional[bool] = None,
110
111
112
113
114
) -> ModelCard:
    """
    Loads or creates a model card.

    Args:
115
116
        repo_id_or_path (`str`):
            The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card.
117
        token (`str`, *optional*):
118
119
            Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
            details.
120
        is_pipeline (`bool`):
121
            Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
122
123
124
125
126
127
128
129
130
131
132
        from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
        model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
            `load_or_create_model_card` from a training script.
        base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
            for DreamBooth-like training.
        prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
        license: (`str`, *optional*): License of the output artifact. Helpful when using
            `load_or_create_model_card` from a training script.
        widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
        inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
            `load_or_create_model_card` from a training script.
133
    """
Lucain's avatar
Lucain committed
134
    if not is_jinja_available():
135
        raise ValueError(
Lucain's avatar
Lucain committed
136
            "Modelcard rendering is based on Jinja templates."
137
            " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
Lucain's avatar
Lucain committed
138
            " To install it, please run `pip install Jinja2`."
139
140
        )

141
142
143
    try:
        # Check if the model card is present on the remote repo
        model_card = ModelCard.load(repo_id_or_path, token=token)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    except (EntryNotFoundError, RepositoryNotFoundError):
        # Otherwise create a model card from template
        if from_training:
            model_card = ModelCard.from_template(
                card_data=ModelCardData(  # Card metadata object that will be converted to YAML block
                    license=license,
                    library_name="diffusers",
                    inference=inference,
                    base_model=base_model,
                    instance_prompt=prompt,
                    widget=widget,
                ),
                template_path=MODEL_CARD_TEMPLATE_PATH,
                model_description=model_description,
            )
        else:
            card_data = ModelCardData()
            component = "pipeline" if is_pipeline else "model"
            if model_description is None:
                model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
            model_card = ModelCard.from_template(card_data, model_description=model_description)
165
166
167
168

    return model_card


169
170
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
    """Populates the `model_card` with library name and optional tags."""
171
172
    if model_card.data.library_name is None:
        model_card.data.library_name = "diffusers"
173
174
175
176
177
178
179
180
181

    if tags is not None:
        if isinstance(tags, str):
            tags = [tags]
        if model_card.data.tags is None:
            model_card.data.tags = []
        for tag in tags:
            model_card.data.tags.append(tag)

182
    return model_card
183
184


185
186
187
188
189
190
191
192
193
194
195
196
197
198
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


199
200
201
202
203
204
205
206
207
208
209
210
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
hf_cache_home = os.path.expanduser(
    os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers")


def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None:
    if new_cache_dir is None:
211
        new_cache_dir = HF_HUB_CACHE
212
213
214
215
216
    if old_cache_dir is None:
        old_cache_dir = old_diffusers_cache

    old_cache_dir = Path(old_cache_dir).expanduser()
    new_cache_dir = Path(new_cache_dir).expanduser()
217
    for old_blob_path in old_cache_dir.glob("**/blobs/*"):
218
219
220
221
222
223
224
225
226
227
228
229
230
        if old_blob_path.is_file() and not old_blob_path.is_symlink():
            new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir)
            new_blob_path.parent.mkdir(parents=True, exist_ok=True)
            os.replace(old_blob_path, new_blob_path)
            try:
                os.symlink(new_blob_path, old_blob_path)
            except OSError:
                logger.warning(
                    "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded."
                )
    # At this point, old_cache_dir contains symlinks to the new cache (it can still be used).


231
cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt")
232
233
234
235
if not os.path.isfile(cache_version_file):
    cache_version = 0
else:
    with open(cache_version_file) as f:
236
237
238
239
        try:
            cache_version = int(f.read())
        except ValueError:
            cache_version = 0
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

if cache_version < 1:
    old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
    if old_cache_is_not_empty:
        logger.warning(
            "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
            "existing cached models. This is a one-time operation, you can interrupt it or run it "
            "later by calling `diffusers.utils.hub_utils.move_cache()`."
        )
        try:
            move_cache()
        except Exception as e:
            trace = "\n".join(traceback.format_tb(e.__traceback__))
            logger.error(
                f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
                "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
                "message and we will do our best to help."
            )

if cache_version < 1:
    try:
261
        os.makedirs(HF_HUB_CACHE, exist_ok=True)
262
263
264
265
        with open(cache_version_file, "w") as f:
            f.write("1")
    except Exception:
        logger.warning(
266
            f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure "
267
268
            "the directory exists and can be written to."
        )
269
270
271
272
273


def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
274
275
        split_index = -2 if weights_name.endswith(".index.json") else -1
        splits = splits[:-split_index] + [variant] + splits[-split_index:]
276
277
278
279
280
        weights_name = ".".join(splits)

    return weights_name


281
@validate_hf_hub_args
282
def _get_model_file(
283
    pretrained_model_name_or_path: Union[str, Path],
284
    *,
285
    weights_name: str,
286
287
288
289
    subfolder: Optional[str] = None,
    cache_dir: Optional[str] = None,
    force_download: bool = False,
    proxies: Optional[Dict] = None,
290
    resume_download: Optional[bool] = None,
291
292
293
294
    local_files_only: bool = False,
    token: Optional[str] = None,
    user_agent: Optional[Union[Dict, str]] = None,
    revision: Optional[str] = None,
295
    commit_hash: Optional[str] = None,
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
):
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
    if os.path.isfile(pretrained_model_name_or_path):
        return pretrained_model_name_or_path
    elif os.path.isdir(pretrained_model_name_or_path):
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            # Load from a PyTorch checkpoint
            model_file = os.path.join(pretrained_model_name_or_path, weights_name)
            return model_file
        elif subfolder is not None and os.path.isfile(
            os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
        ):
            model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
            return model_file
        else:
            raise EnvironmentError(
                f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
            )
    else:
        # 1. First check if deprecated way of loading from branches is used
        if (
            revision in DEPRECATED_REVISION_ARGS
            and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
Patrick von Platen's avatar
Patrick von Platen committed
319
            and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
320
321
322
323
324
325
326
327
328
329
        ):
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=_add_variant(weights_name, revision),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    resume_download=resume_download,
                    local_files_only=local_files_only,
330
                    token=token,
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision or commit_hash,
                )
                warnings.warn(
                    f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
                    FutureWarning,
                )
                return model_file
            except:  # noqa: E722
                warnings.warn(
                    f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
                    FutureWarning,
                )
        try:
            # 2. Load model file as usual
            model_file = hf_hub_download(
                pretrained_model_name_or_path,
                filename=weights_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                resume_download=resume_download,
                local_files_only=local_files_only,
355
                token=token,
356
357
358
359
360
361
                user_agent=user_agent,
                subfolder=subfolder,
                revision=revision or commit_hash,
            )
            return model_file

362
        except RepositoryNotFoundError as e:
363
364
365
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
366
                "token having permission to this repo with `token` or log in with `huggingface-cli "
367
                "login`."
368
369
            ) from e
        except RevisionNotFoundError as e:
370
371
372
373
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                "this model name. Check the model page at "
                f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
374
375
            ) from e
        except EntryNotFoundError as e:
376
377
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
378
379
            ) from e
        except HTTPError as e:
380
            raise EnvironmentError(
381
382
383
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
            ) from e
        except ValueError as e:
384
385
386
387
388
389
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                f" directory containing a file named {weights_name} or"
                " \nCheckout your internet connection or see how to run the library in"
                " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
390
391
            ) from e
        except EnvironmentError as e:
392
393
394
395
396
            raise EnvironmentError(
                f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a file named {weights_name}"
397
            ) from e
398
399


400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
# Adapted from
# https://github.com/huggingface/transformers/blob/1360801a69c0b169e3efdbb0cd05d9a0e72bfb70/src/transformers/utils/hub.py#L976
# Differences are in parallelization of shard downloads and checking if shards are present.


def _check_if_shards_exist_locally(local_dir, subfolder, original_shard_filenames):
    shards_path = os.path.join(local_dir, subfolder)
    shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
    for shard_file in shard_filenames:
        if not os.path.exists(shard_file):
            raise ValueError(
                f"{shards_path} does not appear to have a file named {shard_file} which is "
                "required according to the checkpoint index."
            )


def _get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    proxies=None,
    resume_download=False,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
    if not os.path.isfile(index_filename):
        raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")

    with open(index_filename, "r") as f:
        index = json.loads(f.read())

    original_shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()
    shards_path = os.path.join(pretrained_model_name_or_path, subfolder)

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        _check_if_shards_exist_locally(
            pretrained_model_name_or_path, subfolder=subfolder, original_shard_filenames=original_shard_filenames
        )
        return pretrained_model_name_or_path, sharded_metadata

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    allow_patterns = original_shard_filenames
459
460
461
    if subfolder is not None:
        allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]

462
463
464
    ignore_patterns = ["*.json", "*.md"]
    if not local_files_only:
        # `model_info` call must guarded with the above condition.
465
        model_files_info = model_info(pretrained_model_name_or_path, revision=revision)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
        for shard_file in original_shard_filenames:
            shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
            if not shard_file_present:
                raise EnvironmentError(
                    f"{shards_path} does not appear to have a file named {shard_file} which is "
                    "required according to the checkpoint index."
                )

    try:
        # Load from URL
        cached_folder = snapshot_download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            resume_download=resume_download,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
        )
488
489
        if subfolder is not None:
            cached_folder = os.path.join(cached_folder, subfolder)
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

    # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
    # we don't have to catch them here. We have also dealt with EntryNotFoundError.
    except HTTPError as e:
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
            " again after checking your internet connection."
        ) from e

    # If `local_files_only=True`, `cached_folder` may not contain all the shard files.
    if local_files_only:
        _check_if_shards_exist_locally(
            local_dir=cache_dir, subfolder=subfolder, original_shard_filenames=original_shard_filenames
        )

    return cached_folder, sharded_metadata


508
509
class PushToHubMixin:
    """
510
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
            repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
    ) -> str:
        """
Steven Liu's avatar
Steven Liu committed
548
        Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
549
550
551

        Parameters:
            repo_id (`str`):
Steven Liu's avatar
Steven Liu committed
552
553
554
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
555
            commit_message (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
556
                Message to commit while pushing. Default to `"Upload {object}"`.
557
558
559
560
561
562
563
            private (`bool`, *optional*):
                Whether or not the repository created should be private.
            token (`str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. The token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
Steven Liu's avatar
Steven Liu committed
564
565
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
566
567
568
569
570
571
572
573
574
575
576
577
578
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

579
        # Push the `unet` to an organization with the name "my-finetuned-unet".
580
581
582
583
584
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

585
586
587
588
        # Create a new empty model card and eventually tag it
        model_card = load_or_create_model_card(repo_id, token=token)
        model_card = populate_model_card(model_card)

589
590
591
592
593
594
595
596
        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

597
598
599
            # Update model card if needed:
            model_card.save(os.path.join(tmpdir, "README.md"))

600
601
602
603
604
605
606
            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )