attention_dispatch.py 71.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import functools
import inspect
import math
from enum import Enum
20
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Literal, Optional, Tuple, Union
21
22

import torch
23
24
25
26


if torch.distributed.is_available():
    import torch.distributed._functional_collectives as funcol
27
28
29

from ..utils import (
    get_logger,
30
31
    is_aiter_available,
    is_aiter_version,
32
33
34
    is_flash_attn_3_available,
    is_flash_attn_available,
    is_flash_attn_version,
35
    is_kernels_available,
36
37
38
39
40
41
42
43
44
    is_sageattention_available,
    is_sageattention_version,
    is_torch_npu_available,
    is_torch_version,
    is_torch_xla_available,
    is_torch_xla_version,
    is_xformers_available,
    is_xformers_version,
)
45
from ..utils.constants import DIFFUSERS_ATTN_BACKEND, DIFFUSERS_ATTN_CHECKS, DIFFUSERS_ENABLE_HUB_KERNELS
46
47


48
49
50
if TYPE_CHECKING:
    from ._modeling_parallel import ParallelConfig

51
_REQUIRED_FLASH_VERSION = "2.6.3"
52
_REQUIRED_AITER_VERSION = "0.1.5"
53
54
55
56
57
58
59
_REQUIRED_SAGE_VERSION = "2.1.1"
_REQUIRED_FLEX_VERSION = "2.5.0"
_REQUIRED_XLA_VERSION = "2.2"
_REQUIRED_XFORMERS_VERSION = "0.0.29"

_CAN_USE_FLASH_ATTN = is_flash_attn_available() and is_flash_attn_version(">=", _REQUIRED_FLASH_VERSION)
_CAN_USE_FLASH_ATTN_3 = is_flash_attn_3_available()
60
_CAN_USE_AITER_ATTN = is_aiter_available() and is_aiter_version(">=", _REQUIRED_AITER_VERSION)
61
62
63
64
65
66
67
68
_CAN_USE_SAGE_ATTN = is_sageattention_available() and is_sageattention_version(">=", _REQUIRED_SAGE_VERSION)
_CAN_USE_FLEX_ATTN = is_torch_version(">=", _REQUIRED_FLEX_VERSION)
_CAN_USE_NPU_ATTN = is_torch_npu_available()
_CAN_USE_XLA_ATTN = is_torch_xla_available() and is_torch_xla_version(">=", _REQUIRED_XLA_VERSION)
_CAN_USE_XFORMERS_ATTN = is_xformers_available() and is_xformers_version(">=", _REQUIRED_XFORMERS_VERSION)


if _CAN_USE_FLASH_ATTN:
69
    from flash_attn import flash_attn_func, flash_attn_varlen_func
70
    from flash_attn.flash_attn_interface import _wrapped_flash_attn_backward, _wrapped_flash_attn_forward
71
72
73
else:
    flash_attn_func = None
    flash_attn_varlen_func = None
74
75
    _wrapped_flash_attn_backward = None
    _wrapped_flash_attn_forward = None
76
77


78
if _CAN_USE_FLASH_ATTN_3:
79
80
81
82
83
84
    from flash_attn_interface import flash_attn_func as flash_attn_3_func
    from flash_attn_interface import flash_attn_varlen_func as flash_attn_3_varlen_func
else:
    flash_attn_3_func = None
    flash_attn_3_varlen_func = None

85
86
87
88
89
90

if _CAN_USE_AITER_ATTN:
    from aiter import flash_attn_func as aiter_flash_attn_func
else:
    aiter_flash_attn_func = None

91
92
93
94
95
96
97
98
99
100
101
if DIFFUSERS_ENABLE_HUB_KERNELS:
    if not is_kernels_available():
        raise ImportError(
            "To use FA3 kernel for your hardware from the Hub, the `kernels` library must be installed. Install with `pip install kernels`."
        )
    from ..utils.kernels_utils import _get_fa3_from_hub

    flash_attn_interface_hub = _get_fa3_from_hub()
    flash_attn_3_func_hub = flash_attn_interface_hub.flash_attn_func
else:
    flash_attn_3_func_hub = None
102

103
if _CAN_USE_SAGE_ATTN:
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    from sageattention import (
        sageattn,
        sageattn_qk_int8_pv_fp8_cuda,
        sageattn_qk_int8_pv_fp8_cuda_sm90,
        sageattn_qk_int8_pv_fp16_cuda,
        sageattn_qk_int8_pv_fp16_triton,
        sageattn_varlen,
    )
else:
    sageattn = None
    sageattn_qk_int8_pv_fp16_cuda = None
    sageattn_qk_int8_pv_fp16_triton = None
    sageattn_qk_int8_pv_fp8_cuda = None
    sageattn_qk_int8_pv_fp8_cuda_sm90 = None
    sageattn_varlen = None


121
if _CAN_USE_FLEX_ATTN:
122
123
124
125
126
127
    # We cannot import the flex_attention function from the package directly because it is expected (from the
    # pytorch documentation) that the user may compile it. If we import directly, we will not have access to the
    # compiled function.
    import torch.nn.attention.flex_attention as flex_attention


128
if _CAN_USE_NPU_ATTN:
129
130
131
132
133
    from torch_npu import npu_fusion_attention
else:
    npu_fusion_attention = None


134
if _CAN_USE_XLA_ATTN:
135
136
137
138
139
    from torch_xla.experimental.custom_kernel import flash_attention as xla_flash_attention
else:
    xla_flash_attention = None


140
if _CAN_USE_XFORMERS_ATTN:
141
142
143
144
    import xformers.ops as xops
else:
    xops = None

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Version guard for PyTorch compatibility - custom_op was added in PyTorch 2.4
if torch.__version__ >= "2.4.0":
    _custom_op = torch.library.custom_op
    _register_fake = torch.library.register_fake
else:

    def custom_op_no_op(name, fn=None, /, *, mutates_args, device_types=None, schema=None):
        def wrap(func):
            return func

        return wrap if fn is None else fn

    def register_fake_no_op(op, fn=None, /, *, lib=None, _stacklevel=1):
        def wrap(func):
            return func

        return wrap if fn is None else fn

    _custom_op = custom_op_no_op
    _register_fake = register_fake_no_op

166

167
168
logger = get_logger(__name__)  # pylint: disable=invalid-name

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# TODO(aryan): Add support for the following:
# - Sage Attention++
# - block sparse, radial and other attention methods
# - CP with sage attention, flex, xformers, other missing backends
# - Add support for normal and CP training with backends that don't support it yet

_SAGE_ATTENTION_PV_ACCUM_DTYPE = Literal["fp32", "fp32+fp32"]
_SAGE_ATTENTION_QK_QUANT_GRAN = Literal["per_thread", "per_warp"]
_SAGE_ATTENTION_QUANTIZATION_BACKEND = Literal["cuda", "triton"]


class AttentionBackendName(str, Enum):
    # EAGER = "eager"

    # `flash-attn`
    FLASH = "flash"
    FLASH_VARLEN = "flash_varlen"
    _FLASH_3 = "_flash_3"
    _FLASH_VARLEN_3 = "_flash_varlen_3"
188
189
    _FLASH_3_HUB = "_flash_3_hub"
    # _FLASH_VARLEN_3_HUB = "_flash_varlen_3_hub"  # not supported yet.
190

191
192
193
    # `aiter`
    AITER = "aiter"

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    # PyTorch native
    FLEX = "flex"
    NATIVE = "native"
    _NATIVE_CUDNN = "_native_cudnn"
    _NATIVE_EFFICIENT = "_native_efficient"
    _NATIVE_FLASH = "_native_flash"
    _NATIVE_MATH = "_native_math"
    _NATIVE_NPU = "_native_npu"
    _NATIVE_XLA = "_native_xla"

    # `sageattention`
    SAGE = "sage"
    SAGE_VARLEN = "sage_varlen"
    _SAGE_QK_INT8_PV_FP8_CUDA = "_sage_qk_int8_pv_fp8_cuda"
    _SAGE_QK_INT8_PV_FP8_CUDA_SM90 = "_sage_qk_int8_pv_fp8_cuda_sm90"
    _SAGE_QK_INT8_PV_FP16_CUDA = "_sage_qk_int8_pv_fp16_cuda"
    _SAGE_QK_INT8_PV_FP16_TRITON = "_sage_qk_int8_pv_fp16_triton"
    # TODO: let's not add support for Sparge Attention now because it requires tuning per model
    # We can look into supporting something "autotune"-ing in the future
    # SPARGE = "sparge"

    # `xformers`
    XFORMERS = "xformers"


class _AttentionBackendRegistry:
    _backends = {}
    _constraints = {}
    _supported_arg_names = {}
223
    _supports_context_parallel = set()
224
225
226
227
    _active_backend = AttentionBackendName(DIFFUSERS_ATTN_BACKEND)
    _checks_enabled = DIFFUSERS_ATTN_CHECKS

    @classmethod
228
229
230
231
232
233
    def register(
        cls,
        backend: AttentionBackendName,
        constraints: Optional[List[Callable]] = None,
        supports_context_parallel: bool = False,
    ):
234
235
236
237
238
239
        logger.debug(f"Registering attention backend: {backend} with constraints: {constraints}")

        def decorator(func):
            cls._backends[backend] = func
            cls._constraints[backend] = constraints or []
            cls._supported_arg_names[backend] = set(inspect.signature(func).parameters.keys())
240
241
242
            if supports_context_parallel:
                cls._supports_context_parallel.add(backend.value)

243
244
245
246
247
248
249
250
251
252
253
254
            return func

        return decorator

    @classmethod
    def get_active_backend(cls):
        return cls._active_backend, cls._backends[cls._active_backend]

    @classmethod
    def list_backends(cls):
        return list(cls._backends.keys())

255
    @classmethod
256
257
258
    def _is_context_parallel_available(
        cls,
        backend: AttentionBackendName,
259
    ) -> bool:
260
261
        supports_context_parallel = backend.value in cls._supports_context_parallel
        return supports_context_parallel
262

263
264

@contextlib.contextmanager
265
def attention_backend(backend: Union[str, AttentionBackendName] = AttentionBackendName.NATIVE):
266
267
268
269
270
271
    """
    Context manager to set the active attention backend.
    """
    if backend not in _AttentionBackendRegistry._backends:
        raise ValueError(f"Backend {backend} is not registered.")

272
273
274
    backend = AttentionBackendName(backend)
    _check_attention_backend_requirements(backend)

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
    old_backend = _AttentionBackendRegistry._active_backend
    _AttentionBackendRegistry._active_backend = backend

    try:
        yield
    finally:
        _AttentionBackendRegistry._active_backend = old_backend


def dispatch_attention_fn(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    attention_kwargs: Optional[Dict[str, Any]] = None,
    *,
    backend: Optional[AttentionBackendName] = None,
296
    parallel_config: Optional["ParallelConfig"] = None,
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
) -> torch.Tensor:
    attention_kwargs = attention_kwargs or {}

    if backend is None:
        # If no backend is specified, we either use the default backend (set via the DIFFUSERS_ATTN_BACKEND environment
        # variable), or we use a custom backend based on whether user is using the `attention_backend` context manager
        backend_name, backend_fn = _AttentionBackendRegistry.get_active_backend()
    else:
        backend_name = AttentionBackendName(backend)
        backend_fn = _AttentionBackendRegistry._backends.get(backend_name)

    kwargs = {
        "query": query,
        "key": key,
        "value": value,
        "attn_mask": attn_mask,
        "dropout_p": dropout_p,
        "is_causal": is_causal,
        "scale": scale,
        **attention_kwargs,
317
        "_parallel_config": parallel_config,
318
    }
319
320
    if is_torch_version(">=", "2.5.0"):
        kwargs["enable_gqa"] = enable_gqa
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

    if _AttentionBackendRegistry._checks_enabled:
        removed_kwargs = set(kwargs) - set(_AttentionBackendRegistry._supported_arg_names[backend_name])
        if removed_kwargs:
            logger.warning(f"Removing unsupported arguments for attention backend {backend_name}: {removed_kwargs}.")
        for check in _AttentionBackendRegistry._constraints.get(backend_name):
            check(**kwargs)

    kwargs = {k: v for k, v in kwargs.items() if k in _AttentionBackendRegistry._supported_arg_names[backend_name]}
    return backend_fn(**kwargs)


# ===== Checks =====
# A list of very simple functions to catch common errors quickly when debugging.


def _check_attn_mask_or_causal(attn_mask: Optional[torch.Tensor], is_causal: bool, **kwargs) -> None:
    if attn_mask is not None and is_causal:
        raise ValueError("`is_causal` cannot be True when `attn_mask` is not None.")


def _check_device(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    if query.device != key.device or query.device != value.device:
        raise ValueError("Query, key, and value must be on the same device.")
    if query.dtype != key.dtype or query.dtype != value.dtype:
        raise ValueError("Query, key, and value must have the same dtype.")


def _check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    _check_device(query, key, value)
    if query.device.type != "cuda":
        raise ValueError("Query, key, and value must be on a CUDA device.")


def _check_device_cuda_atleast_smXY(major: int, minor: int) -> Callable:
    def check_device_cuda(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
        _check_device_cuda(query, key, value)
        if torch.cuda.get_device_capability(query.device) < (major, minor):
            raise ValueError(
                f"Query, key, and value must be on a CUDA device with compute capability >= {major}.{minor}."
            )

    return check_device_cuda


def _check_qkv_dtype_match(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    if query.dtype != key.dtype:
        raise ValueError("Query and key must have the same dtype.")
    if query.dtype != value.dtype:
        raise ValueError("Query and value must have the same dtype.")


def _check_qkv_dtype_bf16_or_fp16(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, **kwargs) -> None:
    _check_qkv_dtype_match(query, key, value)
    if query.dtype not in (torch.bfloat16, torch.float16):
        raise ValueError("Query, key, and value must be either bfloat16 or float16.")


def _check_shape(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    **kwargs,
) -> None:
386
387
388
389
390
391
    # Expected shapes:
    # query: (batch_size, seq_len_q, num_heads, head_dim)
    # key:   (batch_size, seq_len_kv, num_heads, head_dim)
    # value: (batch_size, seq_len_kv, num_heads, head_dim)
    # attn_mask: (seq_len_q, seq_len_kv) or (batch_size, seq_len_q, seq_len_kv)
    #            or (batch_size, num_heads, seq_len_q, seq_len_kv)
392
    if query.shape[-1] != key.shape[-1]:
393
394
395
396
397
        raise ValueError("Query and key must have the same head dimension.")
    if key.shape[-3] != value.shape[-3]:
        raise ValueError("Key and value must have the same sequence length.")
    if attn_mask is not None and attn_mask.shape[-1] != key.shape[-3]:
        raise ValueError("Attention mask must match the key's sequence length.")
398
399
400
401
402


# ===== Helper functions =====


403
404
405
406
407
408
409
410
411
412
413
414
415
def _check_attention_backend_requirements(backend: AttentionBackendName) -> None:
    if backend in [AttentionBackendName.FLASH, AttentionBackendName.FLASH_VARLEN]:
        if not _CAN_USE_FLASH_ATTN:
            raise RuntimeError(
                f"Flash Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `flash-attn>={_REQUIRED_FLASH_VERSION}`."
            )

    elif backend in [AttentionBackendName._FLASH_3, AttentionBackendName._FLASH_VARLEN_3]:
        if not _CAN_USE_FLASH_ATTN_3:
            raise RuntimeError(
                f"Flash Attention 3 backend '{backend.value}' is not usable because of missing package or the version is too old. Please build FA3 beta release from source."
            )

416
417
418
419
420
421
422
423
424
425
426
    # TODO: add support Hub variant of FA3 varlen later
    elif backend in [AttentionBackendName._FLASH_3_HUB]:
        if not DIFFUSERS_ENABLE_HUB_KERNELS:
            raise RuntimeError(
                f"Flash Attention 3 Hub backend '{backend.value}' is not usable because the `DIFFUSERS_ENABLE_HUB_KERNELS` env var isn't set. Please set it like `export DIFFUSERS_ENABLE_HUB_KERNELS=yes`."
            )
        if not is_kernels_available():
            raise RuntimeError(
                f"Flash Attention 3 Hub backend '{backend.value}' is not usable because the `kernels` package isn't available. Please install it with `pip install kernels`."
            )

427
428
429
430
431
432
    elif backend == AttentionBackendName.AITER:
        if not _CAN_USE_AITER_ATTN:
            raise RuntimeError(
                f"Aiter Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `aiter>={_REQUIRED_AITER_VERSION}`."
            )

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
    elif backend in [
        AttentionBackendName.SAGE,
        AttentionBackendName.SAGE_VARLEN,
        AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA,
        AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
        AttentionBackendName._SAGE_QK_INT8_PV_FP16_CUDA,
        AttentionBackendName._SAGE_QK_INT8_PV_FP16_TRITON,
    ]:
        if not _CAN_USE_SAGE_ATTN:
            raise RuntimeError(
                f"Sage Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `sageattention>={_REQUIRED_SAGE_VERSION}`."
            )

    elif backend == AttentionBackendName.FLEX:
        if not _CAN_USE_FLEX_ATTN:
            raise RuntimeError(
                f"Flex Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch>=2.5.0`."
            )

    elif backend == AttentionBackendName._NATIVE_NPU:
        if not _CAN_USE_NPU_ATTN:
            raise RuntimeError(
                f"NPU Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_npu`."
            )

    elif backend == AttentionBackendName._NATIVE_XLA:
        if not _CAN_USE_XLA_ATTN:
            raise RuntimeError(
                f"XLA Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `torch_xla>={_REQUIRED_XLA_VERSION}`."
            )

    elif backend == AttentionBackendName.XFORMERS:
        if not _CAN_USE_XFORMERS_ATTN:
            raise RuntimeError(
                f"Xformers Attention backend '{backend.value}' is not usable because of missing package or the version is too old. Please install `xformers>={_REQUIRED_XFORMERS_VERSION}`."
            )


471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
@functools.lru_cache(maxsize=128)
def _prepare_for_flash_attn_or_sage_varlen_without_mask(
    batch_size: int,
    seq_len_q: int,
    seq_len_kv: int,
    device: Optional[torch.device] = None,
):
    seqlens_q = torch.full((batch_size,), seq_len_q, dtype=torch.int32, device=device)
    seqlens_k = torch.full((batch_size,), seq_len_kv, dtype=torch.int32, device=device)
    cu_seqlens_q = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_k = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_q[1:] = torch.cumsum(seqlens_q, dim=0)
    cu_seqlens_k[1:] = torch.cumsum(seqlens_k, dim=0)
    max_seqlen_q = seqlens_q.max().item()
    max_seqlen_k = seqlens_k.max().item()
    return (seqlens_q, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)


def _prepare_for_flash_attn_or_sage_varlen_with_mask(
    batch_size: int,
    seq_len_q: int,
    attn_mask: torch.Tensor,
    device: Optional[torch.device] = None,
):
    seqlens_q = torch.full((batch_size,), seq_len_q, dtype=torch.int32, device=device)
    seqlens_k = attn_mask.sum(dim=1, dtype=torch.int32)
    cu_seqlens_q = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_k = torch.zeros(batch_size + 1, dtype=torch.int32, device=device)
    cu_seqlens_q[1:] = torch.cumsum(seqlens_q, dim=0)
    cu_seqlens_k[1:] = torch.cumsum(seqlens_k, dim=0)
    max_seqlen_q = seqlens_q.max().item()
    max_seqlen_k = seqlens_k.max().item()
    return (seqlens_q, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k)


def _prepare_for_flash_attn_or_sage_varlen(
    batch_size: int,
    seq_len_q: int,
    seq_len_kv: int,
    attn_mask: Optional[torch.Tensor] = None,
    device: Optional[torch.device] = None,
) -> None:
    if attn_mask is None:
        return _prepare_for_flash_attn_or_sage_varlen_without_mask(batch_size, seq_len_q, seq_len_kv, device)
    return _prepare_for_flash_attn_or_sage_varlen_with_mask(batch_size, seq_len_q, attn_mask, device)


def _normalize_attn_mask(attn_mask: torch.Tensor, batch_size: int, seq_len_k: int) -> torch.Tensor:
    """
    Normalize an attention mask to shape [batch_size, seq_len_k] (bool) suitable for inferring seqlens_[q|k] in
    FlashAttention/Sage varlen.

    Supports 1D to 4D shapes and common broadcasting patterns.
    """
    if attn_mask.dtype != torch.bool:
        raise ValueError(f"Attention mask must be of type bool, got {attn_mask.dtype}.")

    if attn_mask.ndim == 1:
        # [seq_len_k] -> broadcast across batch
        attn_mask = attn_mask.unsqueeze(0).expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 2:
        # [batch_size, seq_len_k]. Maybe broadcast across batch
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 2D attention mask."
            )
        attn_mask = attn_mask.expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 3:
        # [batch_size, seq_len_q, seq_len_k] -> reduce over query dimension
        # We do this reduction because we know that arbitrary QK masks is not supported in Flash/Sage varlen.
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 3D attention mask."
            )
        attn_mask = attn_mask.any(dim=1)
        attn_mask = attn_mask.expand(batch_size, seq_len_k)

    elif attn_mask.ndim == 4:
        # [batch_size, num_heads, seq_len_q, seq_len_k] or broadcastable versions
        if attn_mask.size(0) not in [1, batch_size]:
            raise ValueError(
                f"attn_mask.shape[0] ({attn_mask.shape[0]}) must be 1 or {batch_size} for 4D attention mask."
            )
        attn_mask = attn_mask.expand(batch_size, -1, -1, seq_len_k)  # [B, H, Q, K]
        attn_mask = attn_mask.any(dim=(1, 2))  # [B, K]

    else:
        raise ValueError(f"Unsupported attention mask shape: {attn_mask.shape}")

    if attn_mask.shape != (batch_size, seq_len_k):
        raise ValueError(
            f"Normalized attention mask shape mismatch: got {attn_mask.shape}, expected ({batch_size}, {seq_len_k})"
        )

    return attn_mask


def _flex_attention_causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
    return q_idx >= kv_idx


# ===== torch op registrations =====
# Registrations are required for fullgraph tracing compatibility
# TODO: this is only required because the beta release FA3 does not have it. There is a PR adding
# this but it was never merged: https://github.com/Dao-AILab/flash-attention/pull/1590
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
@_custom_op("_diffusers_flash_attn_3::_flash_attn_forward", mutates_args=(), device_types="cuda")
def _wrapped_flash_attn_3(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    qv: Optional[torch.Tensor] = None,
    q_descale: Optional[torch.Tensor] = None,
    k_descale: Optional[torch.Tensor] = None,
    v_descale: Optional[torch.Tensor] = None,
    attention_chunk: int = 0,
    softcap: float = 0.0,
    num_splits: int = 1,
    pack_gqa: Optional[bool] = None,
    deterministic: bool = False,
    sm_margin: int = 0,
595
) -> Tuple[torch.Tensor, torch.Tensor]:
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
    # Hardcoded for now because pytorch does not support tuple/int type hints
    window_size = (-1, -1)
    out, lse, *_ = flash_attn_3_func(
        q=q,
        k=k,
        v=v,
        softmax_scale=softmax_scale,
        causal=causal,
        qv=qv,
        q_descale=q_descale,
        k_descale=k_descale,
        v_descale=v_descale,
        window_size=window_size,
        attention_chunk=attention_chunk,
        softcap=softcap,
        num_splits=num_splits,
        pack_gqa=pack_gqa,
        deterministic=deterministic,
        sm_margin=sm_margin,
    )
616
617
618
619
    lse = lse.permute(0, 2, 1)
    return out, lse


620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
@_register_fake("_diffusers_flash_attn_3::_flash_attn_forward")
def _(
    q: torch.Tensor,
    k: torch.Tensor,
    v: torch.Tensor,
    softmax_scale: Optional[float] = None,
    causal: bool = False,
    qv: Optional[torch.Tensor] = None,
    q_descale: Optional[torch.Tensor] = None,
    k_descale: Optional[torch.Tensor] = None,
    v_descale: Optional[torch.Tensor] = None,
    attention_chunk: int = 0,
    softcap: float = 0.0,
    num_splits: int = 1,
    pack_gqa: Optional[bool] = None,
    deterministic: bool = False,
    sm_margin: int = 0,
) -> Tuple[torch.Tensor, torch.Tensor]:
    window_size = (-1, -1)  # noqa: F841
    # A lot of the parameters here are not yet used in any way within diffusers.
    # We can safely ignore for now and keep the fake op shape propagation simple.
    batch_size, seq_len, num_heads, head_dim = q.shape
642
    lse_shape = (batch_size, seq_len, num_heads)
643
644
645
646
647
648
    return torch.empty_like(q), q.new_empty(lse_shape)


# ===== Helper functions to use attention backends with templated CP autograd functions =====


649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
def _native_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    # Native attention does not return_lse
    if return_lse:
        raise ValueError("Native attention does not support return_lse=True")

    # used for backward pass
    if _save_ctx:
        ctx.save_for_backward(query, key, value)
        ctx.attn_mask = attn_mask
        ctx.dropout_p = dropout_p
        ctx.is_causal = is_causal
        ctx.scale = scale
        ctx.enable_gqa = enable_gqa

    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = torch.nn.functional.scaled_dot_product_attention(
        query=query,
        key=key,
        value=value,
        attn_mask=attn_mask,
        dropout_p=dropout_p,
        is_causal=is_causal,
        scale=scale,
        enable_gqa=enable_gqa,
    )
    out = out.permute(0, 2, 1, 3)

    return out


def _native_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value = ctx.saved_tensors

    query.requires_grad_(True)
    key.requires_grad_(True)
    value.requires_grad_(True)

    query_t, key_t, value_t = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = torch.nn.functional.scaled_dot_product_attention(
        query=query_t,
        key=key_t,
        value=value_t,
        attn_mask=ctx.attn_mask,
        dropout_p=ctx.dropout_p,
        is_causal=ctx.is_causal,
        scale=ctx.scale,
        enable_gqa=ctx.enable_gqa,
    )
    out = out.permute(0, 2, 1, 3)

    grad_out_t = grad_out.permute(0, 2, 1, 3)
    grad_query_t, grad_key_t, grad_value_t = torch.autograd.grad(
        outputs=out, inputs=[query_t, key_t, value_t], grad_outputs=grad_out_t, retain_graph=False
    )

    grad_query = grad_query_t.permute(0, 2, 1, 3)
    grad_key = grad_key_t.permute(0, 2, 1, 3)
    grad_value = grad_value_t.permute(0, 2, 1, 3)

    return grad_query, grad_key, grad_value


729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
# https://github.com/pytorch/pytorch/blob/8904ba638726f8c9a5aff5977c4aa76c9d2edfa6/aten/src/ATen/native/native_functions.yaml#L14958
# forward declaration:
#   aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0., bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)
def _cudnn_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for cuDNN attention.")

    tensors_to_save = ()

    # Contiguous is a must here! Calling cuDNN backend with aten ops produces incorrect results
    # if the input tensors are not contiguous.
    query = query.transpose(1, 2).contiguous()
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()
    tensors_to_save += (query, key, value)

    out, lse, cum_seq_q, cum_seq_k, max_q, max_k, philox_seed, philox_offset, debug_attn_mask = (
        torch.ops.aten._scaled_dot_product_cudnn_attention(
            query=query,
            key=key,
            value=value,
            attn_bias=attn_mask,
            compute_log_sumexp=return_lse,
            dropout_p=dropout_p,
            is_causal=is_causal,
            return_debug_mask=False,
            scale=scale,
        )
    )

    tensors_to_save += (out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset)
    if _save_ctx:
        ctx.save_for_backward(*tensors_to_save)
        ctx.dropout_p = dropout_p
        ctx.is_causal = is_causal
        ctx.scale = scale
        ctx.attn_mask = attn_mask
        ctx.max_q = max_q
        ctx.max_k = max_k

    out = out.transpose(1, 2).contiguous()
    if lse is not None:
        lse = lse.transpose(1, 2).contiguous()
    return (out, lse) if return_lse else out


# backward declaration:
#   aten::_scaled_dot_product_cudnn_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor attn_bias, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, *, float? scale=None) -> (Tensor, Tensor, Tensor)
def _cudnn_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value, out, lse, cum_seq_q, cum_seq_k, philox_seed, philox_offset = ctx.saved_tensors

    grad_out = grad_out.transpose(1, 2).contiguous()
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    # Cannot pass first 5 arguments as kwargs because: https://github.com/pytorch/pytorch/blob/d26ca5de058dbcf56ac52bb43e84dd98df2ace97/torch/_dynamo/variables/torch.py#L1341
    grad_query, grad_key, grad_value = torch.ops.aten._scaled_dot_product_cudnn_attention_backward(
        grad_out,
        query,
        key,
        value,
        out,
        logsumexp=lse,
        philox_seed=philox_seed,
        philox_offset=philox_offset,
        attn_bias=ctx.attn_mask,
        cum_seq_q=cum_seq_q,
        cum_seq_k=cum_seq_k,
        max_q=ctx.max_q,
        max_k=ctx.max_k,
        dropout_p=ctx.dropout_p,
        is_causal=ctx.is_causal,
        scale=ctx.scale,
    )
    grad_query, grad_key, grad_value = (x.transpose(1, 2).contiguous() for x in (grad_query, grad_key, grad_value))

    return grad_query, grad_key, grad_value


# Adapted from: https://github.com/Dao-AILab/flash-attention/blob/fd2fc9d85c8e54e5c20436465bca709bc1a6c5a1/flash_attn/flash_attn_interface.py#L807
def _flash_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("`attn_mask` is not yet supported for flash-attn 2.")
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for flash-attn 2.")

    # Hardcoded for now
    window_size = (-1, -1)
    softcap = 0.0
    alibi_slopes = None
    deterministic = False
    grad_enabled = any(x.requires_grad for x in (query, key, value))

    if scale is None:
        scale = query.shape[-1] ** (-0.5)

    # flash-attn only returns LSE if dropout_p > 0. So, we need to workaround.
    if grad_enabled or (_parallel_config is not None and _parallel_config.context_parallel_config._world_size > 1):
        dropout_p = dropout_p if dropout_p > 0 else 1e-30

    with torch.set_grad_enabled(grad_enabled):
        out, lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
            query,
            key,
            value,
            dropout_p,
            scale,
            is_causal,
            window_size[0],
            window_size[1],
            softcap,
            alibi_slopes,
            return_lse,
        )
        lse = lse.permute(0, 2, 1)

    if _save_ctx:
        ctx.save_for_backward(query, key, value, out, lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.scale = scale
        ctx.is_causal = is_causal
        ctx.window_size = window_size
        ctx.softcap = softcap
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic

    return (out, lse) if return_lse else out


def _flash_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
    **kwargs,
):
    query, key, value, out, lse, rng_state = ctx.saved_tensors
    grad_query, grad_key, grad_value = torch.empty_like(query), torch.empty_like(key), torch.empty_like(value)

    lse_d = _wrapped_flash_attn_backward(  # noqa: F841
        grad_out,
        query,
        key,
        value,
        out,
        lse,
        grad_query,
        grad_key,
        grad_value,
        ctx.dropout_p,
        ctx.scale,
        ctx.is_causal,
        ctx.window_size[0],
        ctx.window_size[1],
        ctx.softcap,
        ctx.alibi_slopes,
        ctx.deterministic,
        rng_state,
    )

    # Head dimension may have been padded
    grad_query = grad_query[..., : grad_out.shape[-1]]
    grad_key = grad_key[..., : grad_out.shape[-1]]
    grad_value = grad_value[..., : grad_out.shape[-1]]

    return grad_query, grad_key, grad_value


def _sage_attention_forward_op(
    ctx: torch.autograd.function.FunctionCtx,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    _save_ctx: bool = True,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("`attn_mask` is not yet supported for Sage attention.")
    if dropout_p > 0.0:
        raise ValueError("`dropout_p` is not yet supported for Sage attention.")
    if enable_gqa:
        raise ValueError("`enable_gqa` is not yet supported for Sage attention.")

    out = sageattn(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )
    lse = None
    if return_lse:
        out, lse, *_ = out
        lse = lse.permute(0, 2, 1)

    return (out, lse) if return_lse else out


def _sage_attention_backward_op(
    ctx: torch.autograd.function.FunctionCtx,
    grad_out: torch.Tensor,
    *args,
):
    raise NotImplementedError("Backward pass is not implemented for Sage attention.")


# ===== Context parallel =====


# Reference:
# - https://github.com/pytorch/pytorch/blob/f58a680d09e13658a52c6ba05c63c15759846bcc/torch/distributed/_functional_collectives.py#L827
# - https://github.com/pytorch/pytorch/blob/f58a680d09e13658a52c6ba05c63c15759846bcc/torch/distributed/_functional_collectives.py#L246
# For fullgraph=True tracing compatibility (since FakeTensor does not have a `wait` method):
def _wait_tensor(tensor):
    if isinstance(tensor, funcol.AsyncCollectiveTensor):
        tensor = tensor.wait()
    return tensor


def _all_to_all_single(x: torch.Tensor, group) -> torch.Tensor:
    shape = x.shape
    # HACK: We need to flatten because despite making tensors contiguous, torch single-file-ization
    # to benchmark triton codegen fails somewhere:
    # buf25 = torch.ops._c10d_functional.all_to_all_single.default(buf24, [1, 1], [1, 1], '3')
    # ValueError: Tensors must be contiguous
    x = x.flatten()
    x = funcol.all_to_all_single(x, None, None, group)
    x = x.reshape(shape)
    x = _wait_tensor(x)
    return x


class TemplatedRingAttention(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: torch.autograd.function.FunctionCtx,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attn_mask: Optional[torch.Tensor],
        dropout_p: float,
        is_causal: bool,
        scale: Optional[float],
        enable_gqa: bool,
        return_lse: bool,
        forward_op,
        backward_op,
        _parallel_config: Optional["ParallelConfig"] = None,
    ):
        ring_mesh = _parallel_config.context_parallel_config._ring_mesh
        rank = _parallel_config.context_parallel_config._ring_local_rank
        world_size = _parallel_config.context_parallel_config.ring_degree
        next_rank = (rank + 1) % world_size
        prev_out = prev_lse = None

        ctx.forward_op = forward_op
        ctx.backward_op = backward_op
        ctx.q_shape = query.shape
        ctx.kv_shape = key.shape
        ctx._parallel_config = _parallel_config

        kv_buffer = torch.cat([key.flatten(), value.flatten()]).contiguous()
        kv_buffer = funcol.all_gather_tensor(kv_buffer, gather_dim=0, group=ring_mesh.get_group())
        kv_buffer = kv_buffer.chunk(world_size)

        for i in range(world_size):
            if i > 0:
                kv = kv_buffer[next_rank]
                key_numel = key.numel()
                key = kv[:key_numel].reshape_as(key)
                value = kv[key_numel:].reshape_as(value)
                next_rank = (next_rank + 1) % world_size

            out, lse = forward_op(
                ctx,
                query,
                key,
                value,
                attn_mask,
                dropout_p,
                is_causal,
                scale,
                enable_gqa,
                True,
                _save_ctx=i == 0,
                _parallel_config=_parallel_config,
            )

            if _parallel_config.context_parallel_config.convert_to_fp32:
                out = out.to(torch.float32)
                lse = lse.to(torch.float32)

            lse = lse.unsqueeze(-1)
            if prev_out is not None:
                out = prev_out - torch.nn.functional.sigmoid(lse - prev_lse) * (prev_out - out)
                lse = prev_lse - torch.nn.functional.logsigmoid(prev_lse - lse)
            prev_out = out
            prev_lse = lse

        out = out.to(query.dtype)
        lse = lse.squeeze(-1)

        return (out, lse) if return_lse else out

    @staticmethod
    def backward(
        ctx: torch.autograd.function.FunctionCtx,
        grad_out: torch.Tensor,
        *args,
    ):
        ring_mesh = ctx._parallel_config.context_parallel_config._ring_mesh
        rank = ctx._parallel_config.context_parallel_config._ring_local_rank
        world_size = ctx._parallel_config.context_parallel_config.ring_degree
        next_rank = (rank + 1) % world_size
        next_ranks = list(range(1, world_size)) + [0]

        accum_dtype = torch.float32 if ctx._parallel_config.context_parallel_config.convert_to_fp32 else grad_out.dtype
        grad_query = torch.zeros(ctx.q_shape, dtype=accum_dtype, device=grad_out.device)
        grad_key = torch.zeros(ctx.kv_shape, dtype=accum_dtype, device=grad_out.device)
        grad_value = torch.zeros(ctx.kv_shape, dtype=accum_dtype, device=grad_out.device)
        next_grad_kv = None

        query, key, value, *_ = ctx.saved_tensors
        kv_buffer = torch.cat([key.flatten(), value.flatten()]).contiguous()
        kv_buffer = funcol.all_gather_tensor(kv_buffer, gather_dim=0, group=ring_mesh.get_group())
        kv_buffer = kv_buffer.chunk(world_size)

        for i in range(world_size):
            if i > 0:
                kv = kv_buffer[next_rank]
                key_numel = key.numel()
                key = kv[:key_numel].reshape_as(key)
                value = kv[key_numel:].reshape_as(value)
                next_rank = (next_rank + 1) % world_size

            grad_query_op, grad_key_op, grad_value_op, *_ = ctx.backward_op(ctx, grad_out)

            if i > 0:
                grad_kv_buffer = _wait_tensor(next_grad_kv)
                grad_key_numel = grad_key.numel()
                grad_key = grad_kv_buffer[:grad_key_numel].reshape_as(grad_key)
                grad_value = grad_kv_buffer[grad_key_numel:].reshape_as(grad_value)

            grad_query += grad_query_op
            grad_key += grad_key_op
            grad_value += grad_value_op

            if i < world_size - 1:
                grad_kv_buffer = torch.cat([grad_key.flatten(), grad_value.flatten()]).contiguous()
                next_grad_kv = funcol.permute_tensor(grad_kv_buffer, next_ranks, group=ring_mesh.get_group())

        grad_query, grad_key, grad_value = (x.to(grad_out.dtype) for x in (grad_query, grad_key, grad_value))

        return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None


class TemplatedUlyssesAttention(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: torch.autograd.function.FunctionCtx,
        query: torch.Tensor,
        key: torch.Tensor,
        value: torch.Tensor,
        attn_mask: Optional[torch.Tensor],
        dropout_p: float,
        is_causal: bool,
        scale: Optional[float],
        enable_gqa: bool,
        return_lse: bool,
        forward_op,
        backward_op,
        _parallel_config: Optional["ParallelConfig"] = None,
    ):
        ulysses_mesh = _parallel_config.context_parallel_config._ulysses_mesh
        world_size = _parallel_config.context_parallel_config.ulysses_degree
        group = ulysses_mesh.get_group()

        ctx.forward_op = forward_op
        ctx.backward_op = backward_op
        ctx._parallel_config = _parallel_config

        B, S_Q_LOCAL, H, D = query.shape
        _, S_KV_LOCAL, _, _ = key.shape
        H_LOCAL = H // world_size
        query = query.reshape(B, S_Q_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        key = key.reshape(B, S_KV_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        value = value.reshape(B, S_KV_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        query, key, value = (_all_to_all_single(x, group) for x in (query, key, value))
        query, key, value = (x.flatten(0, 1).permute(1, 0, 2, 3).contiguous() for x in (query, key, value))

        out = forward_op(
            ctx,
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            _save_ctx=True,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse, *_ = out

        out = out.reshape(B, world_size, S_Q_LOCAL, H_LOCAL, D).permute(1, 3, 0, 2, 4).contiguous()
        out = _all_to_all_single(out, group)
        out = out.flatten(0, 1).permute(1, 2, 0, 3).contiguous()

        if return_lse:
            lse = lse.reshape(B, world_size, S_Q_LOCAL, H_LOCAL).permute(1, 3, 0, 2).contiguous()
            lse = _all_to_all_single(lse, group)
            lse = lse.flatten(0, 1).permute(1, 2, 0).contiguous()
        else:
            lse = None

        return (out, lse) if return_lse else out

    @staticmethod
    def backward(
        ctx: torch.autograd.function.FunctionCtx,
        grad_out: torch.Tensor,
        *args,
    ):
        ulysses_mesh = ctx._parallel_config.context_parallel_config._ulysses_mesh
        world_size = ctx._parallel_config.context_parallel_config.ulysses_degree
        group = ulysses_mesh.get_group()

        B, S_LOCAL, H, D = grad_out.shape
        H_LOCAL = H // world_size

        grad_out = grad_out.reshape(B, S_LOCAL, world_size, H_LOCAL, D).permute(2, 1, 0, 3, 4).contiguous()
        grad_out = _all_to_all_single(grad_out, group)
        grad_out = grad_out.flatten(0, 1).permute(1, 0, 2, 3).contiguous()

        grad_query_op, grad_key_op, grad_value_op, *_ = ctx.backward_op(ctx, grad_out)

        grad_query, grad_key, grad_value = (
            x.reshape(B, world_size, S_LOCAL, H_LOCAL, D).permute(1, 3, 0, 2, 4).contiguous()
            for x in (grad_query_op, grad_key_op, grad_value_op)
        )
        grad_query, grad_key, grad_value = (_all_to_all_single(x, group) for x in (grad_query, grad_key, grad_value))
        grad_query, grad_key, grad_value = (
            x.flatten(0, 1).permute(1, 2, 0, 3).contiguous() for x in (grad_query, grad_key, grad_value)
        )

        return grad_query, grad_key, grad_value, None, None, None, None, None, None, None, None


def _templated_context_parallel_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
    *,
    forward_op,
    backward_op,
    _parallel_config: Optional["ParallelConfig"] = None,
):
    if attn_mask is not None:
        raise ValueError("Attention mask is not yet supported for templated attention.")
    if is_causal:
        raise ValueError("Causal attention is not yet supported for templated attention.")
    if enable_gqa:
        raise ValueError("GQA is not yet supported for templated attention.")

    # TODO: add support for unified attention with ring/ulysses degree both being > 1
    if _parallel_config.context_parallel_config.ring_degree > 1:
        return TemplatedRingAttention.apply(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op,
            backward_op,
            _parallel_config,
        )
    elif _parallel_config.context_parallel_config.ulysses_degree > 1:
        return TemplatedUlyssesAttention.apply(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op,
            backward_op,
            _parallel_config,
        )
    else:
        raise ValueError("Reaching this branch of code is unexpected. Please report a bug.")
1273
1274
1275
1276
1277
1278
1279
1280


# ===== Attention backends =====


@_AttentionBackendRegistry.register(
    AttentionBackendName.FLASH,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1281
    supports_context_parallel=True,
1282
1283
1284
1285
1286
1287
1288
)
def _flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
1289
1290
1291
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1292
) -> torch.Tensor:
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
    lse = None
    if _parallel_config is None:
        out = flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_attn_probs=return_lse,
        )
        if return_lse:
            out, lse, *_ = out
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            None,
            dropout_p,
            is_causal,
            scale,
            False,
            return_lse,
            forward_op=_flash_attention_forward_op,
            backward_op=_flash_attention_backward_op,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334


@_AttentionBackendRegistry.register(
    AttentionBackendName.FLASH_VARLEN,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_varlen_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
1335
    attn_mask: Optional[torch.Tensor] = None,
1336
1337
1338
    dropout_p: float = 0.0,
    scale: Optional[float] = None,
    is_causal: bool = False,
1339
1340
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1341
1342
1343
1344
1345
1346
1347
) -> torch.Tensor:
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

1348
1349
1350
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
1351
        )
1352
    )
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out = flash_attn_varlen_func(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        dropout_p=dropout_p,
        softmax_scale=scale,
        causal=is_causal,
1375
        return_attn_probs=return_lse,
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
    )
    out = out.unflatten(0, (batch_size, -1))

    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_3,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_attention_3(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: Optional[float] = None,
    is_causal: bool = False,
1392
1393
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1394
) -> torch.Tensor:
1395
    out, lse = _wrapped_flash_attn_3(
1396
1397
1398
1399
1400
1401
        q=query,
        k=key,
        v=value,
        softmax_scale=scale,
        causal=is_causal,
    )
1402
    return (out, lse) if return_lse else out
1403
1404


1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_3_HUB,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_attention_3_hub(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    scale: Optional[float] = None,
    is_causal: bool = False,
    window_size: Tuple[int, int] = (-1, -1),
    softcap: float = 0.0,
    deterministic: bool = False,
    return_attn_probs: bool = False,
1419
    _parallel_config: Optional["ParallelConfig"] = None,
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
) -> torch.Tensor:
    out = flash_attn_3_func_hub(
        q=query,
        k=key,
        v=value,
        softmax_scale=scale,
        causal=is_causal,
        qv=None,
        q_descale=None,
        k_descale=None,
        v_descale=None,
        window_size=window_size,
        softcap=softcap,
        num_splits=1,
        pack_gqa=None,
        deterministic=deterministic,
        sm_margin=0,
        return_attn_probs=return_attn_probs,
    )
    # When `return_attn_probs` is True, the above returns a tuple of
    # actual outputs and lse.
    return (out[0], out[1]) if return_attn_probs else out


1444
1445
1446
1447
1448
1449
1450
1451
@_AttentionBackendRegistry.register(
    AttentionBackendName._FLASH_VARLEN_3,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _flash_varlen_attention_3(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
1452
    attn_mask: Optional[torch.Tensor] = None,
1453
1454
    scale: Optional[float] = None,
    is_causal: bool = False,
1455
1456
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1457
1458
1459
1460
1461
1462
1463
) -> torch.Tensor:
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

1464
1465
1466
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
1467
        )
1468
    )
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out, lse, *_ = flash_attn_3_varlen_func(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        softmax_scale=scale,
        causal=is_causal,
    )
    out = out.unflatten(0, (batch_size, -1))

1493
    return (out, lse) if return_lse else out
1494
1495


1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
@_AttentionBackendRegistry.register(
    AttentionBackendName.AITER,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _aiter_flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
) -> torch.Tensor:
    if not return_lse and torch.is_grad_enabled():
        # aiter requires return_lse=True by assertion when gradients are enabled.
        out, lse, *_ = aiter_flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_lse=True,
        )
    else:
        out = aiter_flash_attn_func(
            q=query,
            k=key,
            v=value,
            dropout_p=dropout_p,
            softmax_scale=scale,
            causal=is_causal,
            return_lse=return_lse,
        )
        if return_lse:
            out, lse, *_ = out

    return (out, lse) if return_lse else out


1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
@_AttentionBackendRegistry.register(
    AttentionBackendName.FLEX,
    constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
)
def _native_flex_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[Union[torch.Tensor, "flex_attention.BlockMask"]] = None,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
    return_lse: bool = False,
1550
    _parallel_config: Optional["ParallelConfig"] = None,
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
) -> torch.Tensor:
    # TODO: should we LRU cache the block mask creation?
    score_mod = None
    block_mask = None
    batch_size, seq_len_q, num_heads, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is None or isinstance(attn_mask, flex_attention.BlockMask):
        block_mask = attn_mask
    elif is_causal:
        block_mask = flex_attention.create_block_mask(
            _flex_attention_causal_mask_mod, batch_size, num_heads, seq_len_q, seq_len_kv, query.device
        )
    elif torch.is_tensor(attn_mask):
        if attn_mask.ndim == 2:
            attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)

        attn_mask = attn_mask.expand(batch_size, num_heads, seq_len_q, seq_len_kv)

        if attn_mask.dtype == torch.bool:
            # TODO: this probably does not work but verify!
            def mask_mod(batch_idx, head_idx, q_idx, kv_idx):
                return attn_mask[batch_idx, head_idx, q_idx, kv_idx]

            block_mask = flex_attention.create_block_mask(
                mask_mod, batch_size, None, seq_len_q, seq_len_kv, query.device
            )
        else:

            def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
                return score + attn_mask[batch_idx, head_idx, q_idx, kv_idx]
    else:
        raise ValueError("Attention mask must be either None, a BlockMask, or a 2D/4D tensor.")

    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    out = flex_attention.flex_attention(
        query=query,
        key=key,
        value=value,
        score_mod=score_mod,
        block_mask=block_mask,
        scale=scale,
        enable_gqa=enable_gqa,
        return_lse=return_lse,
    )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName.NATIVE,
    constraints=[_check_device, _check_shape],
1603
    supports_context_parallel=True,
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
)
def _native_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1614
1615
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1616
) -> torch.Tensor:
1617
1618
    if return_lse:
        raise ValueError("Native attention backend does not support setting `return_lse=True`.")
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
    if _parallel_config is None:
        query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
        out = out.permute(0, 2, 1, 3)
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op=_native_attention_forward_op,
            backward_op=_native_attention_backward_op,
            _parallel_config=_parallel_config,
        )

1648
1649
1650
1651
1652
1653
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_CUDNN,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1654
    supports_context_parallel=True,
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
)
def _native_cudnn_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1665
1666
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1667
) -> torch.Tensor:
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
    lse = None
    if _parallel_config is None and not return_lse:
        query, key, value = (x.permute(0, 2, 1, 3).contiguous() for x in (query, key, value))
        with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.CUDNN_ATTENTION):
            out = torch.nn.functional.scaled_dot_product_attention(
                query=query,
                key=key,
                value=value,
                attn_mask=attn_mask,
                dropout_p=dropout_p,
                is_causal=is_causal,
                scale=scale,
                enable_gqa=enable_gqa,
            )
        out = out.permute(0, 2, 1, 3)
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            attn_mask,
            dropout_p,
            is_causal,
            scale,
            enable_gqa,
            return_lse,
            forward_op=_cudnn_attention_forward_op,
            backward_op=_cudnn_attention_backward_op,
            _parallel_config=_parallel_config,
1697
        )
1698
1699
1700
1701
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_EFFICIENT,
    constraints=[_check_device, _check_shape],
)
def _native_efficient_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1717
1718
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1719
) -> torch.Tensor:
1720
1721
    if return_lse:
        raise ValueError("Native efficient attention backend does not support setting `return_lse=True`.")
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.EFFICIENT_ATTENTION):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_FLASH,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _native_flash_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1750
1751
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1752
) -> torch.Tensor:
1753
1754
    if return_lse:
        raise ValueError("Native flash attention backend does not support setting `return_lse=True`.")
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.FLASH_ATTENTION):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=None,  # not supported
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_MATH,
    constraints=[_check_device, _check_shape],
)
def _native_math_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
1784
1785
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1786
) -> torch.Tensor:
1787
1788
    if return_lse:
        raise ValueError("Native math attention backend does not support setting `return_lse=True`.")
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH):
        out = torch.nn.functional.scaled_dot_product_attention(
            query=query,
            key=key,
            value=value,
            attn_mask=attn_mask,
            dropout_p=dropout_p,
            is_causal=is_causal,
            scale=scale,
            enable_gqa=enable_gqa,
        )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_NPU,
    constraints=[_check_device, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _native_npu_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    dropout_p: float = 0.0,
    scale: Optional[float] = None,
1815
1816
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1817
) -> torch.Tensor:
1818
1819
    if return_lse:
        raise ValueError("NPU attention backend does not support setting `return_lse=True`.")
1820
1821
    query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
    out = npu_fusion_attention(
1822
1823
1824
        query,
        key,
        value,
1825
1826
        query.size(1),  # num_heads
        input_layout="BNSD",
1827
1828
1829
        pse=None,
        scale=1.0 / math.sqrt(query.shape[-1]) if scale is None else scale,
        pre_tockens=65536,
1830
        next_tockens=65536,
1831
1832
1833
1834
        keep_prob=1.0 - dropout_p,
        sync=False,
        inner_precise=0,
    )[0]
1835
1836
    out = out.transpose(1, 2).contiguous()
    return out
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848


# Reference: https://github.com/pytorch/xla/blob/06c5533de6588f6b90aa1655d9850bcf733b90b4/torch_xla/experimental/custom_kernel.py#L853
@_AttentionBackendRegistry.register(
    AttentionBackendName._NATIVE_XLA,
    constraints=[_check_device, _check_shape],
)
def _native_xla_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
1849
1850
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1851
) -> torch.Tensor:
1852
1853
    if return_lse:
        raise ValueError("XLA attention backend does not support setting `return_lse=True`.")
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
    query, key, value = (x.permute(0, 2, 1, 3) for x in (query, key, value))
    query = query / math.sqrt(query.shape[-1])
    out = xla_flash_attention(
        q=query,
        k=key,
        v=value,
        causal=is_causal,
    )
    out = out.permute(0, 2, 1, 3)
    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName.SAGE,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
1869
    supports_context_parallel=True,
1870
1871
1872
1873
1874
1875
1876
1877
)
def _sage_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
1878
    _parallel_config: Optional["ParallelConfig"] = None,
1879
) -> torch.Tensor:
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
    lse = None
    if _parallel_config is None:
        out = sageattn(
            q=query,
            k=key,
            v=value,
            tensor_layout="NHD",
            is_causal=is_causal,
            sm_scale=scale,
            return_lse=return_lse,
        )
        if return_lse:
            out, lse, *_ = out
    else:
        out = _templated_context_parallel_attention(
            query,
            key,
            value,
            None,
            0.0,
            is_causal,
            scale,
            False,
            return_lse,
            forward_op=_sage_attention_forward_op,
            backward_op=_sage_attention_backward_op,
            _parallel_config=_parallel_config,
        )
        if return_lse:
            out, lse = out

    return (out, lse) if return_lse else out
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921


@_AttentionBackendRegistry.register(
    AttentionBackendName.SAGE_VARLEN,
    constraints=[_check_device_cuda, _check_qkv_dtype_bf16_or_fp16, _check_shape],
)
def _sage_varlen_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
1922
    attn_mask: Optional[torch.Tensor] = None,
1923
1924
    is_causal: bool = False,
    scale: Optional[float] = None,
1925
1926
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
1927
) -> torch.Tensor:
1928
1929
1930
    if return_lse:
        raise ValueError("Sage varlen backend does not support setting `return_lse=True`.")

1931
1932
1933
1934
1935
1936
    batch_size, seq_len_q, _, _ = query.shape
    _, seq_len_kv, _, _ = key.shape

    if attn_mask is not None:
        attn_mask = _normalize_attn_mask(attn_mask, batch_size, seq_len_kv)

1937
1938
1939
    (_, seqlens_k), (cu_seqlens_q, cu_seqlens_k), (max_seqlen_q, max_seqlen_k) = (
        _prepare_for_flash_attn_or_sage_varlen(
            batch_size, seq_len_q, seq_len_kv, attn_mask=attn_mask, device=query.device
1940
        )
1941
    )
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979

    key_valid, value_valid = [], []
    for b in range(batch_size):
        valid_len = seqlens_k[b]
        key_valid.append(key[b, :valid_len])
        value_valid.append(value[b, :valid_len])

    query_packed = query.flatten(0, 1)
    key_packed = torch.cat(key_valid, dim=0)
    value_packed = torch.cat(value_valid, dim=0)

    out = sageattn_varlen(
        q=query_packed,
        k=key_packed,
        v=value_packed,
        cu_seqlens_q=cu_seqlens_q,
        cu_seqlens_k=cu_seqlens_k,
        max_seqlen_q=max_seqlen_q,
        max_seqlen_k=max_seqlen_k,
        is_causal=is_causal,
        sm_scale=scale,
    )
    out = out.unflatten(0, (batch_size, -1))

    return out


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA,
    constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
)
def _sage_qk_int8_pv_fp8_cuda_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
1980
    _parallel_config: Optional["ParallelConfig"] = None,
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp8_cuda(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP8_CUDA_SM90,
    constraints=[_check_device_cuda_atleast_smXY(9, 0), _check_shape],
)
def _sage_qk_int8_pv_fp8_cuda_sm90_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2004
    _parallel_config: Optional["ParallelConfig"] = None,
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp8_cuda_sm90(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP16_CUDA,
    constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
)
def _sage_qk_int8_pv_fp16_cuda_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2028
    _parallel_config: Optional["ParallelConfig"] = None,
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp16_cuda(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName._SAGE_QK_INT8_PV_FP16_TRITON,
    constraints=[_check_device_cuda_atleast_smXY(8, 0), _check_shape],
)
def _sage_qk_int8_pv_fp16_triton_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    is_causal: bool = False,
    scale: Optional[float] = None,
    return_lse: bool = False,
2052
    _parallel_config: Optional["ParallelConfig"] = None,
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
) -> torch.Tensor:
    return sageattn_qk_int8_pv_fp16_triton(
        q=query,
        k=key,
        v=value,
        tensor_layout="NHD",
        is_causal=is_causal,
        sm_scale=scale,
        return_lse=return_lse,
    )


@_AttentionBackendRegistry.register(
    AttentionBackendName.XFORMERS,
    constraints=[_check_attn_mask_or_causal, _check_device, _check_shape],
)
def _xformers_attention(
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attn_mask: Optional[torch.Tensor] = None,
    dropout_p: float = 0.0,
    is_causal: bool = False,
    scale: Optional[float] = None,
    enable_gqa: bool = False,
2078
2079
    return_lse: bool = False,
    _parallel_config: Optional["ParallelConfig"] = None,
2080
) -> torch.Tensor:
2081
2082
2083
    if return_lse:
        raise ValueError("xformers attention backend does not support setting `return_lse=True`.")

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
    batch_size, seq_len_q, num_heads_q, _ = query.shape
    _, seq_len_kv, num_heads_kv, _ = key.shape

    if is_causal:
        attn_mask = xops.LowerTriangularMask()
    elif attn_mask is not None:
        if attn_mask.ndim == 2:
            attn_mask = attn_mask.view(attn_mask.size(0), 1, attn_mask.size(1), 1)
        elif attn_mask.ndim != 4:
            raise ValueError("Only 2D and 4D attention masks are supported for xformers attention.")
        attn_mask = attn_mask.expand(batch_size, num_heads_q, seq_len_q, seq_len_kv).type_as(query)

    if enable_gqa:
        if num_heads_q % num_heads_kv != 0:
            raise ValueError("Number of heads in query must be divisible by number of heads in key/value.")
        num_heads_per_group = num_heads_q // num_heads_kv
        query = query.unflatten(2, (num_heads_kv, -1))
        key = key.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)
        value = value.unflatten(2, (num_heads_kv, -1)).expand(-1, -1, -1, num_heads_per_group, -1)

    out = xops.memory_efficient_attention(query, key, value, attn_mask, dropout_p, scale)

    if enable_gqa:
        out = out.flatten(2, 3)

    return out