attention_flax.py 6.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import flax.linen as nn
import jax.numpy as jnp


class FlaxAttentionBlock(nn.Module):
    query_dim: int
    heads: int = 8
    dim_head: int = 64
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        inner_dim = self.dim_head * self.heads
        self.scale = self.dim_head**-0.5

        # Weights were exported with old names {to_q, to_k, to_v, to_out}
        self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
        self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
        self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")

35
        self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    def reshape_heads_to_batch_dim(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
        tensor = jnp.transpose(tensor, (0, 2, 1, 3))
        tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
        return tensor

    def reshape_batch_dim_to_heads(self, tensor):
        batch_size, seq_len, dim = tensor.shape
        head_size = self.heads
        tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
        tensor = jnp.transpose(tensor, (0, 2, 1, 3))
        tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
        return tensor

    def __call__(self, hidden_states, context=None, deterministic=True):
        context = hidden_states if context is None else context

        query_proj = self.query(hidden_states)
        key_proj = self.key(context)
        value_proj = self.value(context)

        query_states = self.reshape_heads_to_batch_dim(query_proj)
        key_states = self.reshape_heads_to_batch_dim(key_proj)
        value_states = self.reshape_heads_to_batch_dim(value_proj)

        # compute attentions
        attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
        attention_scores = attention_scores * self.scale
        attention_probs = nn.softmax(attention_scores, axis=2)

        # attend to values
        hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
        hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
        hidden_states = self.proj_attn(hidden_states)
        return hidden_states


class FlaxBasicTransformerBlock(nn.Module):
    dim: int
    n_heads: int
    d_head: int
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        # self attention
85
        self.attn1 = FlaxAttentionBlock(self.dim, self.n_heads, self.d_head, self.dropout, dtype=self.dtype)
86
        # cross attention
87
        self.attn2 = FlaxAttentionBlock(self.dim, self.n_heads, self.d_head, self.dropout, dtype=self.dtype)
88
89
90
91
92
93
94
95
        self.ff = FlaxGluFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
        self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
        self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
        self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)

    def __call__(self, hidden_states, context, deterministic=True):
        # self attention
        residual = hidden_states
96
        hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
97
98
99
100
        hidden_states = hidden_states + residual

        # cross attention
        residual = hidden_states
101
        hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        hidden_states = hidden_states + residual

        # feed forward
        residual = hidden_states
        hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
        hidden_states = hidden_states + residual

        return hidden_states


class FlaxSpatialTransformer(nn.Module):
    in_channels: int
    n_heads: int
    d_head: int
    depth: int = 1
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

    def setup(self):
        self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)

        inner_dim = self.n_heads * self.d_head
        self.proj_in = nn.Conv(
            inner_dim,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

        self.transformer_blocks = [
            FlaxBasicTransformerBlock(inner_dim, self.n_heads, self.d_head, dropout=self.dropout, dtype=self.dtype)
            for _ in range(self.depth)
        ]

        self.proj_out = nn.Conv(
            inner_dim,
            kernel_size=(1, 1),
            strides=(1, 1),
            padding="VALID",
            dtype=self.dtype,
        )

    def __call__(self, hidden_states, context, deterministic=True):
        batch, height, width, channels = hidden_states.shape
        # import ipdb; ipdb.set_trace()
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)

        hidden_states = hidden_states.reshape(batch, height * width, channels)

        for transformer_block in self.transformer_blocks:
            hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)

        hidden_states = hidden_states.reshape(batch, height, width, channels)

        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states + residual

        return hidden_states


class FlaxGluFeedForward(nn.Module):
    dim: int
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def setup(self):
        # The second linear layer needs to be called
        # net_2 for now to match the index of the Sequential layer
        self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
        self.net_2 = nn.Dense(self.dim, dtype=self.dtype)

    def __call__(self, hidden_states, deterministic=True):
        hidden_states = self.net_0(hidden_states)
        hidden_states = self.net_2(hidden_states)
        return hidden_states


class FlaxGEGLU(nn.Module):
    dim: int
    dropout: float = 0.0
    dtype: jnp.dtype = jnp.float32

187
188
    def setup(self):
        inner_dim = self.dim * 4
189
        self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
190
191

    def __call__(self, hidden_states, deterministic=True):
192
        hidden_states = self.proj(hidden_states)
193
        hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
194
        return hidden_linear * nn.gelu(hidden_gelu)