test_pipelines_common.py 19.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import contextlib
import gc
import inspect
import io
import re
import tempfile
import time
import unittest
from typing import Callable, Union

import numpy as np
import torch

14
import diffusers
15
16
17
18
from diffusers import (
    CycleDiffusionPipeline,
    DanceDiffusionPipeline,
    DiffusionPipeline,
anton-'s avatar
anton- committed
19
    RePaintPipeline,
20
21
22
    StableDiffusionDepth2ImgPipeline,
    StableDiffusionImg2ImgPipeline,
)
23
from diffusers.utils import logging
24
25
26
27
28
from diffusers.utils.import_utils import is_accelerate_available, is_xformers_available
from diffusers.utils.testing_utils import require_torch, torch_device


torch.backends.cuda.matmul.allow_tf32 = False
29
30


31
32
33
ALLOWED_REQUIRED_ARGS = ["source_prompt", "prompt", "image", "mask_image", "example_image"]


34
35
36
37
38
39
40
41
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

42
43
44
45
46
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

47
48
49
50
51
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def test_save_load_local(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
81
            RePaintPipeline,
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        self.assertLess(max_diff, 1e-4)

    def test_pipeline_call_implements_required_args(self):
        assert hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        required_parameters.pop("self")
        required_parameters = set(required_parameters)
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

        for param in required_parameters:
            if param == "kwargs":
                # kwargs can be added if arguments of pipeline call function are deprecated
                continue
            assert param in ALLOWED_REQUIRED_ARGS

        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})

        required_optional_params = ["generator", "num_inference_steps", "return_dict"]
        for param in required_optional_params:
            assert param in optional_parameters

    def test_inference_batch_consistent(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        for batch_size in [2, 4, 13]:
            batched_inputs = {}
            for name, value in inputs.items():
                if name in ALLOWED_REQUIRED_ARGS:
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

            batched_inputs["num_inference_steps"] = inputs["num_inference_steps"]
            batched_inputs["output_type"] = None

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_inference_batch_single_identical(self):
        if self.pipeline_class.__name__ in ["CycleDiffusionPipeline", "RePaintPipeline"]:
            # RePaint can hardly be made deterministic since the scheduler is currently always
            # indeterministic
            # CycleDiffusion is also slighly undeterministic
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
        batch_size = 3
        for name, value in inputs.items():
            if name in ALLOWED_REQUIRED_ARGS:
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

        batched_inputs["num_inference_steps"] = inputs["num_inference_steps"]

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

236
        logger.setLevel(level=diffusers.logging.WARNING)
237
238
239
240
241
        if torch_device != "mps":
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            assert np.abs(output_batch[0][0] - output[0][0]).max() < 1e-4

242
243
244
245
    def test_dict_tuple_outputs_equivalent(self):
        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
246
            RePaintPipeline,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

        max_diff = np.abs(output - output_tuple).max()
265
        self.assertLess(max_diff, 1e-4)
266
267
268
269
270
271
272
273
274
275
276
277
278

    def test_num_inference_steps_consistent(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        outputs = []
        times = []
279
        for num_steps in [9, 6, 3]:
280
281
282
283
284
285
286
287
288
289
290
291
292
            inputs = self.get_dummy_inputs(torch_device)
            inputs["num_inference_steps"] = num_steps

            start_time = time.time()
            output = pipe(**inputs)[0]
            inference_time = time.time() - start_time

            outputs.append(output)
            times.append(inference_time)

        # check that all outputs have the same shape
        self.assertTrue(all(outputs[0].shape == output.shape for output in outputs))
        # check that the inference time increases with the number of inference steps
293
        self.assertTrue(all(times[i] < times[i - 1] for i in range(1, len(times))))
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_float16_inference(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.half()
        pipe_fp16 = self.pipeline_class(**components)
        pipe_fp16.to(torch_device)
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

        max_diff = np.abs(output - output_fp16).max()
        self.assertLess(max_diff, 1e-2, "The outputs of the fp16 and fp32 pipelines are too different.")

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
    def test_save_load_float16(self):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
337
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
        self.assertLess(max_diff, 3e-3, "The output of the fp16 pipeline changed after saving and loading.")

    def test_save_load_optional_components(self):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
361
            RePaintPipeline,
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
            StableDiffusionImg2ImgPipeline,
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(output - output_loaded).max()
399
        self.assertLess(max_diff, 1e-4)
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
        self.assertTrue(np.isnan(output_cuda).sum() == 0)

    def test_attention_slicing_forward_pass(self):
        if not self.test_attention_slicing:
            return

        if torch_device == "mps" and self.pipeline_class in (
            DanceDiffusionPipeline,
            CycleDiffusionPipeline,
anton-'s avatar
anton- committed
428
            RePaintPipeline,
429
            StableDiffusionImg2ImgPipeline,
430
            StableDiffusionDepth2ImgPipeline,
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
        ):
            # FIXME: inconsistent outputs on MPS
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # Warmup pass when using mps (see #372)
        if torch_device == "mps":
            _ = pipe(**self.get_dummy_inputs(torch_device))

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

        max_diff = np.abs(output_with_slicing - output_without_slicing).max()
452
        self.assertLess(max_diff, 1e-3, "Attention slicing should not affect the inference results")
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available(),
        reason="CPU offload is only available with CUDA and `accelerate` installed",
    )
    def test_cpu_offload_forward_pass(self):
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(output_with_offload - output_without_offload).max()
475
        self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
    def test_xformers_attention_forward_pass(self):
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(output_with_offload - output_without_offload).max()
498
        self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results")
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")