pipeline_pndm.py 4 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


16
from typing import List, Optional, Tuple, Union
Pedro Cuenca's avatar
Pedro Cuenca committed
17

Patrick von Platen's avatar
Patrick von Platen committed
18
19
import torch

Partho's avatar
Partho committed
20
21
from ...models import UNet2DModel
from ...schedulers import PNDMScheduler
22
from ...utils import randn_tensor
23
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
Patrick von Platen's avatar
Patrick von Platen committed
24
25


Patrick von Platen's avatar
Patrick von Platen committed
26
class PNDMPipeline(DiffusionPipeline):
Kashif Rasul's avatar
Kashif Rasul committed
27
28
29
30
31
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
32
        unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents.
Kashif Rasul's avatar
Kashif Rasul committed
33
34
35
36
        scheduler ([`SchedulerMixin`]):
            The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image.
    """

Partho's avatar
Partho committed
37
38
39
40
    unet: UNet2DModel
    scheduler: PNDMScheduler

    def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
Patrick von Platen's avatar
Patrick von Platen committed
41
        super().__init__()
42
        self.register_modules(unet=unet, scheduler=scheduler)
Patrick von Platen's avatar
Patrick von Platen committed
43

Patrick von Platen's avatar
Patrick von Platen committed
44
    @torch.no_grad()
Partho's avatar
Partho committed
45
46
47
48
    def __call__(
        self,
        batch_size: int = 1,
        num_inference_steps: int = 50,
49
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
Partho's avatar
Partho committed
50
        output_type: Optional[str] = "pil",
51
        return_dict: bool = True,
Partho's avatar
Partho committed
52
        **kwargs,
53
    ) -> Union[ImagePipelineOutput, Tuple]:
Kashif Rasul's avatar
Kashif Rasul committed
54
55
        r"""
        Args:
56
57
58
59
60
            batch_size (`int`, `optional`, defaults to 1): The number of images to generate.
            num_inference_steps (`int`, `optional`, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            generator (`torch.Generator`, `optional`): A [torch
Kashif Rasul's avatar
Kashif Rasul committed
61
62
                generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
63
            output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose
64
                between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
65
            return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a
66
                [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
67
68

        Returns:
69
70
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
Kashif Rasul's avatar
Kashif Rasul committed
71
        """
Patrick von Platen's avatar
Patrick von Platen committed
72
73
        # For more information on the sampling method you can take a look at Algorithm 2 of
        # the official paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
74
75

        # Sample gaussian noise to begin loop
76
        image = randn_tensor(
Patrick von Platen's avatar
Patrick von Platen committed
77
            (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
Patrick von Platen's avatar
Patrick von Platen committed
78
            generator=generator,
79
            device=self.device,
Patrick von Platen's avatar
Patrick von Platen committed
80
81
        )

82
        self.scheduler.set_timesteps(num_inference_steps)
hysts's avatar
hysts committed
83
        for t in self.progress_bar(self.scheduler.timesteps):
84
            model_output = self.unet(image, t).sample
Patrick von Platen's avatar
Patrick von Platen committed
85

86
            image = self.scheduler.step(model_output, t, image).prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
87

88
89
        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()
90
91
        if output_type == "pil":
            image = self.numpy_to_pil(image)
92

93
94
95
96
        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)