pipeline_controlnet_inpaint.py 79.2 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import numpy as np
import PIL.Image
import torch
import torch.nn.functional as F
24
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
25

26
from ...image_processor import PipelineImageInput, VaeImageProcessor
27
from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
28
from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
29
from ...models.lora import adjust_lora_scale_text_encoder
30
from ...schedulers import KarrasDiffusionSchedulers
31
32
33
34
35
36
37
38
from ...utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
Dhruv Nair's avatar
Dhruv Nair committed
39
from ...utils.torch_utils import is_compiled_module, randn_tensor
40
from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin
41
42
43
44
45
46
47
48
49
50
51
from ..stable_diffusion import StableDiffusionPipelineOutput
from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from .multicontrolnet import MultiControlNetModel


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```py
52
53
        >>> # !pip install transformers accelerate
        >>> from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel, DDIMScheduler
54
55
56
57
        >>> from diffusers.utils import load_image
        >>> import numpy as np
        >>> import torch

58
59
60
61
62
63
64
65
66
67
68
69
        >>> init_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
        ... )
        >>> init_image = init_image.resize((512, 512))

        >>> generator = torch.Generator(device="cpu").manual_seed(1)

        >>> mask_image = load_image(
        ...     "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
        ... )
        >>> mask_image = mask_image.resize((512, 512))

70

71
72
73
74
75
76
        >>> def make_canny_condition(image):
        ...     image = np.array(image)
        ...     image = cv2.Canny(image, 100, 200)
        ...     image = image[:, :, None]
        ...     image = np.concatenate([image, image, image], axis=2)
        ...     image = Image.fromarray(image)
77
        ...     return image
78
79


80
        >>> control_image = make_canny_condition(init_image)
81

82
83
84
        >>> controlnet = ControlNetModel.from_pretrained(
        ...     "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
        ... )
85
        >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
86
        ...     "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
87
88
        ... )

89
        >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
90
91
92
93
        >>> pipe.enable_model_cpu_offload()

        >>> # generate image
        >>> image = pipe(
94
        ...     "a handsome man with ray-ban sunglasses",
95
        ...     num_inference_steps=20,
96
        ...     generator=generator,
97
        ...     eta=1.0,
98
99
        ...     image=init_image,
        ...     mask_image=mask_image,
100
        ...     control_image=control_image,
101
102
103
104
105
        ... ).images[0]
        ```
"""


106
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
107
108
109
110
def retrieve_latents(
    encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
    if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
111
        return encoder_output.latent_dist.sample(generator)
112
113
    elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
        return encoder_output.latent_dist.mode()
114
115
116
117
118
119
    elif hasattr(encoder_output, "latents"):
        return encoder_output.latents
    else:
        raise AttributeError("Could not access latents of provided encoder_output")


120
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.prepare_mask_and_masked_image
121
def prepare_mask_and_masked_image(image, mask, height, width, return_image=False):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """
    Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
    converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
    ``image`` and ``1`` for the ``mask``.

    The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
    binarized (``mask > 0.5``) and cast to ``torch.float32`` too.

    Args:
        image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
            It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
            ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
        mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
            It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
            ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.


    Raises:
        ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
        should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
        TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
            (ot the other way around).

    Returns:
        tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
            dimensions: ``batch x channels x height x width``.
    """
149
150
151
152
153
154
    deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
    deprecate(
        "prepare_mask_and_masked_image",
        "0.30.0",
        deprecation_message,
    )
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    if image is None:
        raise ValueError("`image` input cannot be undefined.")

    if mask is None:
        raise ValueError("`mask_image` input cannot be undefined.")

    if isinstance(image, torch.Tensor):
        if not isinstance(mask, torch.Tensor):
            raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not")

        # Batch single image
        if image.ndim == 3:
            assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)"
            image = image.unsqueeze(0)

        # Batch and add channel dim for single mask
        if mask.ndim == 2:
            mask = mask.unsqueeze(0).unsqueeze(0)

        # Batch single mask or add channel dim
        if mask.ndim == 3:
            # Single batched mask, no channel dim or single mask not batched but channel dim
            if mask.shape[0] == 1:
                mask = mask.unsqueeze(0)

            # Batched masks no channel dim
            else:
                mask = mask.unsqueeze(1)

        assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
        assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
        assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"

        # Check image is in [-1, 1]
        if image.min() < -1 or image.max() > 1:
            raise ValueError("Image should be in [-1, 1] range")

        # Check mask is in [0, 1]
        if mask.min() < 0 or mask.max() > 1:
            raise ValueError("Mask should be in [0, 1] range")

        # Binarize mask
        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1

        # Image as float32
        image = image.to(dtype=torch.float32)
    elif isinstance(mask, torch.Tensor):
        raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
    else:
        # preprocess image
        if isinstance(image, (PIL.Image.Image, np.ndarray)):
            image = [image]
        if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
            # resize all images w.r.t passed height an width
            image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
            image = [np.array(i.convert("RGB"))[None, :] for i in image]
            image = np.concatenate(image, axis=0)
        elif isinstance(image, list) and isinstance(image[0], np.ndarray):
            image = np.concatenate([i[None, :] for i in image], axis=0)

        image = image.transpose(0, 3, 1, 2)
        image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0

        # preprocess mask
        if isinstance(mask, (PIL.Image.Image, np.ndarray)):
            mask = [mask]

        if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
            mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
            mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
            mask = mask.astype(np.float32) / 255.0
        elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
            mask = np.concatenate([m[None, None, :] for m in mask], axis=0)

        mask[mask < 0.5] = 0
        mask[mask >= 0.5] = 1
        mask = torch.from_numpy(mask)

    masked_image = image * (mask < 0.5)

236
237
238
239
    # n.b. ensure backwards compatibility as old function does not return image
    if return_image:
        return mask, masked_image, image

240
241
242
    return mask, masked_image


243
class StableDiffusionControlNetInpaintPipeline(
244
245
246
247
248
249
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
250
):
251
    r"""
Steven Liu's avatar
Steven Liu committed
252
    Pipeline for image inpainting using Stable Diffusion with ControlNet guidance.
253

Steven Liu's avatar
Steven Liu committed
254
255
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
    implemented for all pipelines (downloading, saving, running on a particular device, etc.).
256

Steven Liu's avatar
Steven Liu committed
257
258
    The pipeline also inherits the following loading methods:
        - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
259
260
261
        - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
        - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
        - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
262
        - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
263

264
265
    <Tip>

Steven Liu's avatar
Steven Liu committed
266
267
268
269
270
271
    This pipeline can be used with checkpoints that have been specifically fine-tuned for inpainting
    ([runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting)) as well as
    default text-to-image Stable Diffusion checkpoints
    ([runwayml/stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5)). Default text-to-image
    Stable Diffusion checkpoints might be preferable for ControlNets that have been fine-tuned on those, such as
    [lllyasviel/control_v11p_sd15_inpaint](https://huggingface.co/lllyasviel/control_v11p_sd15_inpaint).
272
273
274

    </Tip>

275
276
    Args:
        vae ([`AutoencoderKL`]):
Steven Liu's avatar
Steven Liu committed
277
278
279
280
281
282
283
            Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
        text_encoder ([`~transformers.CLIPTextModel`]):
            Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
        tokenizer ([`~transformers.CLIPTokenizer`]):
            A `CLIPTokenizer` to tokenize text.
        unet ([`UNet2DConditionModel`]):
            A `UNet2DConditionModel` to denoise the encoded image latents.
284
        controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
Steven Liu's avatar
Steven Liu committed
285
286
287
            Provides additional conditioning to the `unet` during the denoising process. If you set multiple
            ControlNets as a list, the outputs from each ControlNet are added together to create one combined
            additional conditioning.
288
289
290
291
292
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
Steven Liu's avatar
Steven Liu committed
293
294
295
296
            Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
            about a model's potential harms.
        feature_extractor ([`~transformers.CLIPImageProcessor`]):
            A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
297
    """
298

299
    model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
300
    _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
301
    _exclude_from_cpu_offload = ["safety_checker"]
302
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
303
304
305
306
307
308
309
310
311
312
313

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
314
        image_encoder: CLIPVisionModelWithProjection = None,
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
        requires_safety_checker: bool = True,
    ):
        super().__init__()

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
            )

        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )

        if isinstance(controlnet, (list, tuple)):
            controlnet = MultiControlNetModel(controlnet)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
347
            image_encoder=image_encoder,
348
349
350
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
351
352
353
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
        )
354
355
356
        self.control_image_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
        )
357
358
359
360
361
362
363
364
365
366
367
368
        self.register_to_config(requires_safety_checker=requires_safety_checker)

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
369
        lora_scale: Optional[float] = None,
370
        **kwargs,
371
372
373
374
375
376
377
378
379
380
381
382
383
    ):
        deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
        deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)

        prompt_embeds_tuple = self.encode_prompt(
            prompt=prompt,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
384
            **kwargs,
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        )

        # concatenate for backwards comp
        prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])

        return prompt_embeds

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
    def encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
403
        clip_skip: Optional[int] = None,
404
405
406
407
408
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
409
            prompt (`str` or `List[str]`, *optional*):
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
428
            lora_scale (`float`, *optional*):
429
430
431
432
                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
433
        """
434
435
436
437
438
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

439
            # dynamically adjust the LoRA scale
440
            if not USE_PEFT_BACKEND:
441
442
443
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)
444

445
446
447
448
449
450
451
452
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
co63oc's avatar
co63oc committed
453
            # textual inversion: process multi-vector tokens if necessary
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
499

500
501
502
503
504
505
506
507
        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

co63oc's avatar
co63oc committed
535
            # textual inversion: process multi-vector tokens if necessary
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

563
            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
564
565
566
567

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

568
        if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
569
            # Retrieve the original scale by scaling back the LoRA layers
570
            unscale_lora_layers(self.text_encoder, lora_scale)
571

572
        return prompt_embeds, negative_prompt_embeds
573

574
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
575
    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
576
577
578
579
580
581
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)
596

597
            return image_embeds, uncond_image_embeds
598

599
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
600
    def prepare_ip_adapter_image_embeds(
601
        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
602
603
604
605
    ):
        if ip_adapter_image_embeds is None:
            if not isinstance(ip_adapter_image, list):
                ip_adapter_image = [ip_adapter_image]
606

607
608
609
610
            if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
                raise ValueError(
                    f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
                )
611

612
613
614
615
616
617
618
619
620
621
622
623
            image_embeds = []
            for single_ip_adapter_image, image_proj_layer in zip(
                ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
            ):
                output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
                single_image_embeds, single_negative_image_embeds = self.encode_image(
                    single_ip_adapter_image, device, 1, output_hidden_state
                )
                single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
                single_negative_image_embeds = torch.stack(
                    [single_negative_image_embeds] * num_images_per_prompt, dim=0
                )
624

625
                if do_classifier_free_guidance:
626
627
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                    single_image_embeds = single_image_embeds.to(device)
628

629
630
                image_embeds.append(single_image_embeds)
        else:
631
632
633
634
635
636
637
638
639
640
641
            image_embeds = []
            for single_image_embeds in ip_adapter_image_embeds:
                if do_classifier_free_guidance:
                    single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                    single_negative_image_embeds = single_negative_image_embeds.repeat(num_images_per_prompt, 1, 1)
                    single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
                    single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
                else:
                    single_image_embeds = single_image_embeds.repeat(num_images_per_prompt, 1, 1)
                image_embeds.append(single_image_embeds)

642
643
        return image_embeds

644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is None:
            has_nsfw_concept = None
        else:
            if torch.is_tensor(image):
                feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
            else:
                feature_extractor_input = self.image_processor.numpy_to_pil(image)
            safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
        return image, has_nsfw_concept

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
    def decode_latents(self, latents):
661
662
663
        deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
        deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)

664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

689
690
691
692
693
694
695
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
    def get_timesteps(self, num_inference_steps, strength, device):
        # get the original timestep using init_timestep
        init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

        t_start = max(num_inference_steps - init_timestep, 0)
        timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
696
697
        if hasattr(self.scheduler, "set_begin_index"):
            self.scheduler.set_begin_index(t_start * self.scheduler.order)
698
699
700

        return timesteps, num_inference_steps - t_start

701
702
703
704
    def check_inputs(
        self,
        prompt,
        image,
705
        mask_image,
706
707
708
        height,
        width,
        callback_steps,
709
        output_type,
710
711
712
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
713
714
        ip_adapter_image=None,
        ip_adapter_image_embeds=None,
715
        controlnet_conditioning_scale=1.0,
716
717
        control_guidance_start=0.0,
        control_guidance_end=1.0,
718
        callback_on_step_end_tensor_inputs=None,
719
        padding_mask_crop=None,
720
    ):
721
        if height is not None and height % 8 != 0 or width is not None and width % 8 != 0:
722
723
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

724
        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
725
726
727
728
729
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

730
731
732
733
734
735
736
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

763
764
765
766
767
768
769
770
771
772
773
774
775
        if padding_mask_crop is not None:
            if not isinstance(image, PIL.Image.Image):
                raise ValueError(
                    f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
                )
            if not isinstance(mask_image, PIL.Image.Image):
                raise ValueError(
                    f"The mask image should be a PIL image when inpainting mask crop, but is of type"
                    f" {type(mask_image)}."
                )
            if output_type != "pil":
                raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
        # `prompt` needs more sophisticated handling when there are multiple
        # conditionings.
        if isinstance(self.controlnet, MultiControlNetModel):
            if isinstance(prompt, list):
                logger.warning(
                    f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
                    " prompts. The conditionings will be fixed across the prompts."
                )

        # Check `image`
        is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
            self.controlnet, torch._dynamo.eval_frame.OptimizedModule
        )
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            self.check_image(image, prompt, prompt_embeds)
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if not isinstance(image, list):
                raise TypeError("For multiple controlnets: `image` must be type `list`")

            # When `image` is a nested list:
            # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
            elif any(isinstance(i, list) for i in image):
                raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif len(image) != len(self.controlnet.nets):
                raise ValueError(
809
                    f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
                )

            for image_ in image:
                self.check_image(image_, prompt, prompt_embeds)
        else:
            assert False

        # Check `controlnet_conditioning_scale`
        if (
            isinstance(self.controlnet, ControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, ControlNetModel)
        ):
            if not isinstance(controlnet_conditioning_scale, float):
                raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
        elif (
            isinstance(self.controlnet, MultiControlNetModel)
            or is_compiled
            and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
        ):
            if isinstance(controlnet_conditioning_scale, list):
                if any(isinstance(i, list) for i in controlnet_conditioning_scale):
                    raise ValueError("A single batch of multiple conditionings are supported at the moment.")
            elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
                self.controlnet.nets
            ):
                raise ValueError(
                    "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
                    " the same length as the number of controlnets"
                )
        else:
            assert False

843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        if len(control_guidance_start) != len(control_guidance_end):
            raise ValueError(
                f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
            )

        if isinstance(self.controlnet, MultiControlNetModel):
            if len(control_guidance_start) != len(self.controlnet.nets):
                raise ValueError(
                    f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
                )

        for start, end in zip(control_guidance_start, control_guidance_end):
            if start >= end:
                raise ValueError(
                    f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
                )
            if start < 0.0:
                raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
            if end > 1.0:
                raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")

864
865
866
867
868
        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

869
870
871
872
873
874
875
876
877
878
        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim != 3:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

879
    # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image
880
881
882
    def check_image(self, image, prompt, prompt_embeds):
        image_is_pil = isinstance(image, PIL.Image.Image)
        image_is_tensor = isinstance(image, torch.Tensor)
883
        image_is_np = isinstance(image, np.ndarray)
884
885
        image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
        image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
886
        image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
887

888
889
890
891
892
893
894
895
        if (
            not image_is_pil
            and not image_is_tensor
            and not image_is_np
            and not image_is_pil_list
            and not image_is_tensor_list
            and not image_is_np_list
        ):
896
            raise TypeError(
897
                f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
898
899
900
901
            )

        if image_is_pil:
            image_batch_size = 1
902
        else:
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
            image_batch_size = len(image)

        if prompt is not None and isinstance(prompt, str):
            prompt_batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            prompt_batch_size = len(prompt)
        elif prompt_embeds is not None:
            prompt_batch_size = prompt_embeds.shape[0]

        if image_batch_size != 1 and image_batch_size != prompt_batch_size:
            raise ValueError(
                f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
            )

    def prepare_control_image(
        self,
        image,
        width,
        height,
        batch_size,
        num_images_per_prompt,
        device,
        dtype,
926
927
        crops_coords,
        resize_mode,
928
929
930
        do_classifier_free_guidance=False,
        guess_mode=False,
    ):
931
932
933
        image = self.control_image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        ).to(dtype=torch.float32)
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
        image_batch_size = image.shape[0]

        if image_batch_size == 1:
            repeat_by = batch_size
        else:
            # image batch size is the same as prompt batch size
            repeat_by = num_images_per_prompt

        image = image.repeat_interleave(repeat_by, dim=0)

        image = image.to(device=device, dtype=dtype)

        if do_classifier_free_guidance and not guess_mode:
            image = torch.cat([image] * 2)

        return image

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_latents
952
953
954
955
956
957
958
959
960
961
962
963
964
    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
        image=None,
        timestep=None,
        is_strength_max=True,
965
966
        return_noise=False,
        return_image_latents=False,
967
    ):
968
969
970
971
972
973
974
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

975
976
977
978
979
980
        if (image is None or timestep is None) and not is_strength_max:
            raise ValueError(
                "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
                "However, either the image or the noise timestep has not been provided."
            )

981
982
        if return_image_latents or (latents is None and not is_strength_max):
            image = image.to(device=device, dtype=dtype)
983
984
985
986
987

            if image.shape[1] == 4:
                image_latents = image
            else:
                image_latents = self._encode_vae_image(image=image, generator=generator)
988
            image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
989

990
        if latents is None:
991
            noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
992
            # if strength is 1. then initialise the latents to noise, else initial to image + noise
993
            latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
994
995
            # if pure noise then scale the initial latents by the  Scheduler's init sigma
            latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
996
        else:
997
998
            noise = latents.to(device)
            latents = noise * self.scheduler.init_noise_sigma
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
        outputs = (latents,)

        if return_noise:
            outputs += (noise,)

        if return_image_latents:
            outputs += (image_latents,)

        return outputs
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline.prepare_mask_latents
    def prepare_mask_latents(
        self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the mask to latents shape as we concatenate the mask to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision
        mask = torch.nn.functional.interpolate(
            mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
        )
        mask = mask.to(device=device, dtype=dtype)

        masked_image = masked_image.to(device=device, dtype=dtype)
1023
1024
1025
1026
1027

        if masked_image.shape[1] == 4:
            masked_image_latents = masked_image
        else:
            masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

        # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
        if mask.shape[0] < batch_size:
            if not batch_size % mask.shape[0] == 0:
                raise ValueError(
                    "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
                    f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
                    " of masks that you pass is divisible by the total requested batch size."
                )
            mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
        if masked_image_latents.shape[0] < batch_size:
            if not batch_size % masked_image_latents.shape[0] == 0:
                raise ValueError(
                    "The passed images and the required batch size don't match. Images are supposed to be duplicated"
                    f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
                    " Make sure the number of images that you pass is divisible by the total requested batch size."
                )
            masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)

        mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
        masked_image_latents = (
            torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
        )

        # aligning device to prevent device errors when concating it with the latent model input
        masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
        return mask, masked_image_latents

1056
1057
1058
1059
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint.StableDiffusionInpaintPipeline._encode_vae_image
    def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
        if isinstance(generator, list):
            image_latents = [
1060
                retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
1061
1062
1063
1064
                for i in range(image.shape[0])
            ]
            image_latents = torch.cat(image_latents, dim=0)
        else:
1065
            image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
1066
1067
1068
1069
1070

        image_latents = self.vae.config.scaling_factor * image_latents

        return image_latents

1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def clip_skip(self):
        return self._clip_skip

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def num_timesteps(self):
        return self._num_timesteps

1094
1095
1096
1097
1098
    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
1099
1100
1101
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
1102
1103
        height: Optional[int] = None,
        width: Optional[int] = None,
1104
        padding_mask_crop: Optional[int] = None,
1105
        strength: float = 1.0,
1106
1107
1108
1109
1110
1111
1112
1113
1114
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
1115
        ip_adapter_image: Optional[PipelineImageInput] = None,
1116
        ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
1117
1118
1119
1120
1121
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
1122
1123
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
1124
        clip_skip: Optional[int] = None,
1125
1126
1127
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        **kwargs,
1128
1129
    ):
        r"""
Steven Liu's avatar
Steven Liu committed
1130
        The call function to the pipeline for generation.
1131
1132
1133

        Args:
            prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1134
                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
1135
1136
            image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`,
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1137
1138
1139
1140
1141
                `Image`, NumPy array or tensor representing an image batch to be used as the starting point. For both
                NumPy array and PyTorch tensor, the expected value range is between `[0, 1]`. If it's a tensor or a
                list or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a NumPy array or
                a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. It can also accept image
                latents as `image`, but if passing latents directly it is not encoded again.
1142
1143
            mask_image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`,
                    `List[PIL.Image.Image]`, or `List[np.ndarray]`):
Steven Liu's avatar
Steven Liu committed
1144
                `Image`, NumPy array or tensor representing an image batch to mask `image`. White pixels in the mask
1145
                are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a
Steven Liu's avatar
Steven Liu committed
1146
1147
1148
1149
                single channel (luminance) before use. If it's a NumPy array or PyTorch tensor, it should contain one
                color channel (L) instead of 3, so the expected shape for PyTorch tensor would be `(B, 1, H, W)`, `(B,
                H, W)`, `(1, H, W)`, `(H, W)`. And for NumPy array, it would be for `(B, H, W, 1)`, `(B, H, W)`, `(H,
                W, 1)`, or `(H, W)`.
1150
            control_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`,
1151
                    `List[List[torch.FloatTensor]]`, or `List[List[PIL.Image.Image]]`):
Steven Liu's avatar
Steven Liu committed
1152
1153
1154
1155
1156
1157
1158
                The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
                specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
                accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
                and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
                `init`, images must be passed as a list such that each element of the list can be correctly batched for
                input to a single ControlNet.
            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1159
                The height in pixels of the generated image.
Steven Liu's avatar
Steven Liu committed
1160
            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
1161
                The width in pixels of the generated image.
1162
1163
1164
1165
1166
1167
            padding_mask_crop (`int`, *optional*, defaults to `None`):
                The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to image and mask_image. If
                `padding_mask_crop` is not `None`, it will first find a rectangular region with the same aspect ration of the image and
                contains all masked area, and then expand that area based on `padding_mask_crop`. The image and mask_image will then be cropped based on
                the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large
                and contain information inreleant for inpainging, such as background.
Steven Liu's avatar
Steven Liu committed
1168
1169
1170
1171
1172
1173
            strength (`float`, *optional*, defaults to 1.0):
                Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
                starting point and more noise is added the higher the `strength`. The number of denoising steps depends
                on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
                process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
                essentially ignores `image`.
1174
1175
1176
1177
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Steven Liu's avatar
Steven Liu committed
1178
1179
                A higher guidance scale value encourages the model to generate images closely linked to the text
                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
1180
            negative_prompt (`str` or `List[str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1181
1182
                The prompt or prompts to guide what to not include in image generation. If not defined, you need to
                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
1183
1184
1185
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1186
1187
                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
1188
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1189
1190
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
1191
            latents (`torch.FloatTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1192
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
1193
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
Steven Liu's avatar
Steven Liu committed
1194
                tensor is generated by sampling using the supplied random `generator`.
1195
            prompt_embeds (`torch.FloatTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1196
1197
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
1198
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Steven Liu's avatar
Steven Liu committed
1199
1200
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
1201
            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1202
            ip_adapter_image_embeds (`List[torch.FloatTensor]`, *optional*):
1203
1204
1205
1206
                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters.
                Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding
                if `do_classifier_free_guidance` is set to `True`.
                If not provided, embeddings are computed from the `ip_adapter_image` input argument.
1207
            output_type (`str`, *optional*, defaults to `"pil"`):
Steven Liu's avatar
Steven Liu committed
1208
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
1209
1210
1211
1212
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            cross_attention_kwargs (`dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
1213
1214
                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1215
            controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 0.5):
Steven Liu's avatar
Steven Liu committed
1216
1217
1218
                The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
                to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
                the corresponding scale as a list.
1219
            guess_mode (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1220
1221
                The ControlNet encoder tries to recognize the content of the input image even if you remove all
                prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
1222
            control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
Steven Liu's avatar
Steven Liu committed
1223
                The percentage of total steps at which the ControlNet starts applying.
1224
            control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
Steven Liu's avatar
Steven Liu committed
1225
                The percentage of total steps at which the ControlNet stops applying.
1226
1227
1228
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
1229
1230
1231
1232
1233
1234
1235
1236
1237
            callback_on_step_end (`Callable`, *optional*):
                A function that calls at the end of each denoising steps during the inference. The function is called
                with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
                callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
                `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeine class.
1238
1239
1240
1241
1242

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
Steven Liu's avatar
Steven Liu committed
1243
1244
1245
1246
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
1247
        """
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

1265
1266
1267
1268
1269
1270
1271
1272
1273
        controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
            control_guidance_start = len(control_guidance_end) * [control_guidance_start]
        elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
            mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1274
1275
1276
1277
            control_guidance_start, control_guidance_end = (
                mult * [control_guidance_start],
                mult * [control_guidance_end],
            )
1278

1279
1280
1281
1282
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
1283
            mask_image,
1284
1285
1286
            height,
            width,
            callback_steps,
1287
            output_type,
1288
1289
1290
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
1291
1292
            ip_adapter_image,
            ip_adapter_image_embeds,
1293
            controlnet_conditioning_scale,
1294
1295
            control_guidance_start,
            control_guidance_end,
1296
            callback_on_step_end_tensor_inputs,
1297
            padding_mask_crop,
1298
1299
        )

1300
1301
1302
1303
        self._guidance_scale = guidance_scale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs

1304
1305
1306
1307
1308
1309
1310
1311
        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

1312
1313
1314
1315
1316
1317
1318
1319
        if padding_mask_crop is not None:
            height, width = self.image_processor.get_default_height_width(image, height, width)
            crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
            resize_mode = "fill"
        else:
            crops_coords = None
            resize_mode = "default"

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
        device = self._execution_device

        if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
1333
        text_encoder_lora_scale = (
1334
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1335
        )
1336
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1337
1338
1339
            prompt,
            device,
            num_images_per_prompt,
1340
            self.do_classifier_free_guidance,
1341
1342
1343
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1344
            lora_scale=text_encoder_lora_scale,
1345
            clip_skip=self.clip_skip,
1346
        )
1347
1348
1349
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
1350
        if self.do_classifier_free_guidance:
1351
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1352

1353
        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1354
            image_embeds = self.prepare_ip_adapter_image_embeds(
1355
1356
1357
1358
1359
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
1360
            )
1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
1372
1373
                crops_coords=crops_coords,
                resize_mode=resize_mode,
1374
                do_classifier_free_guidance=self.do_classifier_free_guidance,
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
1389
1390
                    crops_coords=crops_coords,
                    resize_mode=resize_mode,
1391
                    do_classifier_free_guidance=self.do_classifier_free_guidance,
1392
1393
1394
1395
1396
1397
1398
1399
1400
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

1401
        # 4.1 Preprocess mask and image - resizes image and mask w.r.t height and width
1402
1403
1404
1405
        original_image = image
        init_image = self.image_processor.preprocess(
            image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
        )
1406
1407
        init_image = init_image.to(dtype=torch.float32)

1408
1409
1410
        mask = self.mask_processor.preprocess(
            mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
        )
1411
1412
1413

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape
1414

1415
1416
        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
1417
1418
1419
1420
1421
1422
1423
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0
1424
        self._num_timesteps = len(timesteps)
1425
1426
1427

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
1428
1429
1430
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = num_channels_unet == 4
        latents_outputs = self.prepare_latents(
1431
1432
1433
1434
1435
1436
1437
1438
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
1439
1440
1441
1442
1443
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
1444
1445
        )

1446
1447
1448
1449
1450
        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
1461
            self.do_classifier_free_guidance,
1462
1463
1464
1465
1466
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

1467
        # 7.1 Add image embeds for IP-Adapter
Aryan's avatar
Aryan committed
1468
1469
1470
1471
1472
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if ip_adapter_image is not None or ip_adapter_image_embeds is not None
            else None
        )
1473
1474

        # 7.2 Create tensor stating which controlnets to keep
1475
        controlnet_keep = []
1476
        for i in range(len(timesteps)):
1477
            keeps = [
1478
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1479
1480
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
1481
            controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1482

1483
1484
1485
1486
1487
        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
1488
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1489
1490
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

1491
                # controlnet(s) inference
1492
                if guess_mode and self.do_classifier_free_guidance:
1493
                    # Infer ControlNet only for the conditional batch.
1494
1495
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1496
1497
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
1498
                    control_model_input = latent_model_input
1499
1500
                    controlnet_prompt_embeds = prompt_embeds

1501
1502
1503
                if isinstance(controlnet_keep[i], list):
                    cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
                else:
1504
1505
1506
1507
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]
1508

1509
                down_block_res_samples, mid_block_res_sample = self.controlnet(
1510
                    control_model_input,
1511
1512
1513
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
1514
                    conditioning_scale=cond_scale,
1515
1516
1517
1518
                    guess_mode=guess_mode,
                    return_dict=False,
                )

1519
                if guess_mode and self.do_classifier_free_guidance:
1520
1521
1522
1523
1524
1525
1526
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
                    mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])

                # predict the noise residual
1527
1528
1529
                if num_channels_unet == 9:
                    latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)

1530
1531
1532
1533
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
1534
                    cross_attention_kwargs=self.cross_attention_kwargs,
1535
1536
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
1537
                    added_cond_kwargs=added_cond_kwargs,
1538
1539
1540
1541
                    return_dict=False,
                )[0]

                # perform guidance
1542
                if self.do_classifier_free_guidance:
1543
1544
1545
1546
1547
1548
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

1549
                if num_channels_unet == 4:
1550
                    init_latents_proper = image_latents
1551
                    if self.do_classifier_free_guidance:
1552
1553
1554
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask
1555
1556

                    if i < len(timesteps) - 1:
1557
1558
1559
1560
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper, noise, torch.tensor([noise_timestep])
                        )
1561
1562
1563

                    latents = (1 - init_mask) * init_latents_proper + init_mask * latents

1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

1574
1575
1576
1577
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
1578
1579
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)
1580
1581
1582
1583
1584
1585
1586
1587
1588

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
Will Berman's avatar
Will Berman committed
1589
1590
1591
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

1604
1605
1606
        if padding_mask_crop is not None:
            image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]

1607
1608
        # Offload all models
        self.maybe_free_model_hooks()
1609
1610
1611
1612
1613

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)