"references/vscode:/vscode.git/clone" did not exist on "82929ae14263ffbeb1bf9a8b866d3af902011699"
modular_blocks.py 4.12 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...utils import logging
from ..modular_pipeline import AutoPipelineBlocks, SequentialPipelineBlocks
from ..modular_pipeline_utils import InsertableDict
from .before_denoise import (
    WanInputStep,
    WanPrepareLatentsStep,
    WanSetTimestepsStep,
)
from .decoders import WanDecodeStep
from .denoise import WanDenoiseStep
from .encoders import WanTextEncoderStep


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# before_denoise: text2vid
class WanBeforeDenoiseStep(SequentialPipelineBlocks):
    block_classes = [
        WanInputStep,
        WanSetTimestepsStep,
        WanPrepareLatentsStep,
    ]
    block_names = ["input", "set_timesteps", "prepare_latents"]

    @property
    def description(self):
        return (
            "Before denoise step that prepare the inputs for the denoise step.\n"
            + "This is a sequential pipeline blocks:\n"
            + " - `WanInputStep` is used to adjust the batch size of the model inputs\n"
            + " - `WanSetTimestepsStep` is used to set the timesteps\n"
            + " - `WanPrepareLatentsStep` is used to prepare the latents\n"
        )


# before_denoise: all task (text2vid,)
class WanAutoBeforeDenoiseStep(AutoPipelineBlocks):
    block_classes = [
        WanBeforeDenoiseStep,
    ]
    block_names = ["text2vid"]
    block_trigger_inputs = [None]

    @property
    def description(self):
        return (
            "Before denoise step that prepare the inputs for the denoise step.\n"
            + "This is an auto pipeline block that works for text2vid.\n"
            + " - `WanBeforeDenoiseStep` (text2vid) is used.\n"
        )


# denoise: text2vid
class WanAutoDenoiseStep(AutoPipelineBlocks):
    block_classes = [
        WanDenoiseStep,
    ]
    block_names = ["denoise"]
    block_trigger_inputs = [None]

    @property
    def description(self) -> str:
        return (
            "Denoise step that iteratively denoise the latents. "
            "This is a auto pipeline block that works for text2vid tasks.."
            " - `WanDenoiseStep` (denoise) for text2vid tasks."
        )


# decode: all task (text2img, img2img, inpainting)
class WanAutoDecodeStep(AutoPipelineBlocks):
    block_classes = [WanDecodeStep]
    block_names = ["non-inpaint"]
    block_trigger_inputs = [None]

    @property
    def description(self):
        return "Decode step that decode the denoised latents into videos outputs.\n - `WanDecodeStep`"


# text2vid
class WanAutoBlocks(SequentialPipelineBlocks):
    block_classes = [
        WanTextEncoderStep,
        WanAutoBeforeDenoiseStep,
        WanAutoDenoiseStep,
        WanAutoDecodeStep,
    ]
    block_names = [
        "text_encoder",
        "before_denoise",
        "denoise",
        "decoder",
    ]

    @property
    def description(self):
        return (
            "Auto Modular pipeline for text-to-video using Wan.\n"
            + "- for text-to-video generation, all you need to provide is `prompt`"
        )


TEXT2VIDEO_BLOCKS = InsertableDict(
    [
        ("text_encoder", WanTextEncoderStep),
        ("input", WanInputStep),
        ("set_timesteps", WanSetTimestepsStep),
        ("prepare_latents", WanPrepareLatentsStep),
        ("denoise", WanDenoiseStep),
        ("decode", WanDecodeStep),
    ]
)


AUTO_BLOCKS = InsertableDict(
    [
        ("text_encoder", WanTextEncoderStep),
        ("before_denoise", WanAutoBeforeDenoiseStep),
        ("denoise", WanAutoDenoiseStep),
        ("decode", WanAutoDecodeStep),
    ]
)


ALL_BLOCKS = {
    "text2video": TEXT2VIDEO_BLOCKS,
    "auto": AUTO_BLOCKS,
}