_helpers.py 9.23 KB
Newer Older
Aryan's avatar
Aryan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from dataclasses import dataclass
from typing import Any, Callable, Dict, Type


@dataclass
class AttentionProcessorMetadata:
    skip_processor_output_fn: Callable[[Any], Any]


@dataclass
class TransformerBlockMetadata:
    return_hidden_states_index: int = None
    return_encoder_hidden_states_index: int = None

    _cls: Type = None
    _cached_parameter_indices: Dict[str, int] = None

    def _get_parameter_from_args_kwargs(self, identifier: str, args=(), kwargs=None):
        kwargs = kwargs or {}
        if identifier in kwargs:
            return kwargs[identifier]
        if self._cached_parameter_indices is not None:
            return args[self._cached_parameter_indices[identifier]]
        if self._cls is None:
            raise ValueError("Model class is not set for metadata.")
        parameters = list(inspect.signature(self._cls.forward).parameters.keys())
        parameters = parameters[1:]  # skip `self`
        self._cached_parameter_indices = {param: i for i, param in enumerate(parameters)}
        if identifier not in self._cached_parameter_indices:
            raise ValueError(f"Parameter '{identifier}' not found in function signature but was requested.")
        index = self._cached_parameter_indices[identifier]
        if index >= len(args):
            raise ValueError(f"Expected {index} arguments but got {len(args)}.")
        return args[index]


class AttentionProcessorRegistry:
    _registry = {}
    # TODO(aryan): this is only required for the time being because we need to do the registrations
    # for classes. If we do it eagerly, i.e. call the functions in global scope, we will get circular
    # import errors because of the models imported in this file.
    _is_registered = False

    @classmethod
    def register(cls, model_class: Type, metadata: AttentionProcessorMetadata):
        cls._register()
        cls._registry[model_class] = metadata

    @classmethod
    def get(cls, model_class: Type) -> AttentionProcessorMetadata:
        cls._register()
        if model_class not in cls._registry:
            raise ValueError(f"Model class {model_class} not registered.")
        return cls._registry[model_class]

    @classmethod
    def _register(cls):
        if cls._is_registered:
            return
        cls._is_registered = True
        _register_attention_processors_metadata()


class TransformerBlockRegistry:
    _registry = {}
    # TODO(aryan): this is only required for the time being because we need to do the registrations
    # for classes. If we do it eagerly, i.e. call the functions in global scope, we will get circular
    # import errors because of the models imported in this file.
    _is_registered = False

    @classmethod
    def register(cls, model_class: Type, metadata: TransformerBlockMetadata):
        cls._register()
        metadata._cls = model_class
        cls._registry[model_class] = metadata

    @classmethod
    def get(cls, model_class: Type) -> TransformerBlockMetadata:
        cls._register()
        if model_class not in cls._registry:
            raise ValueError(f"Model class {model_class} not registered.")
        return cls._registry[model_class]

    @classmethod
    def _register(cls):
        if cls._is_registered:
            return
        cls._is_registered = True
        _register_transformer_blocks_metadata()


def _register_attention_processors_metadata():
    from ..models.attention_processor import AttnProcessor2_0
    from ..models.transformers.transformer_cogview4 import CogView4AttnProcessor

    # AttnProcessor2_0
    AttentionProcessorRegistry.register(
        model_class=AttnProcessor2_0,
        metadata=AttentionProcessorMetadata(
            skip_processor_output_fn=_skip_proc_output_fn_Attention_AttnProcessor2_0,
        ),
    )

    # CogView4AttnProcessor
    AttentionProcessorRegistry.register(
        model_class=CogView4AttnProcessor,
        metadata=AttentionProcessorMetadata(
            skip_processor_output_fn=_skip_proc_output_fn_Attention_CogView4AttnProcessor,
        ),
    )


def _register_transformer_blocks_metadata():
    from ..models.attention import BasicTransformerBlock
    from ..models.transformers.cogvideox_transformer_3d import CogVideoXBlock
    from ..models.transformers.transformer_cogview4 import CogView4TransformerBlock
    from ..models.transformers.transformer_flux import FluxSingleTransformerBlock, FluxTransformerBlock
    from ..models.transformers.transformer_hunyuan_video import (
        HunyuanVideoSingleTransformerBlock,
        HunyuanVideoTokenReplaceSingleTransformerBlock,
        HunyuanVideoTokenReplaceTransformerBlock,
        HunyuanVideoTransformerBlock,
    )
    from ..models.transformers.transformer_ltx import LTXVideoTransformerBlock
    from ..models.transformers.transformer_mochi import MochiTransformerBlock
    from ..models.transformers.transformer_wan import WanTransformerBlock

    # BasicTransformerBlock
    TransformerBlockRegistry.register(
        model_class=BasicTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=None,
        ),
    )

    # CogVideoX
    TransformerBlockRegistry.register(
        model_class=CogVideoXBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )

    # CogView4
    TransformerBlockRegistry.register(
        model_class=CogView4TransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )

    # Flux
    TransformerBlockRegistry.register(
        model_class=FluxTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=1,
            return_encoder_hidden_states_index=0,
        ),
    )
    TransformerBlockRegistry.register(
        model_class=FluxSingleTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=1,
            return_encoder_hidden_states_index=0,
        ),
    )

    # HunyuanVideo
    TransformerBlockRegistry.register(
        model_class=HunyuanVideoTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )
    TransformerBlockRegistry.register(
        model_class=HunyuanVideoSingleTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )
    TransformerBlockRegistry.register(
        model_class=HunyuanVideoTokenReplaceTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )
    TransformerBlockRegistry.register(
        model_class=HunyuanVideoTokenReplaceSingleTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )

    # LTXVideo
    TransformerBlockRegistry.register(
        model_class=LTXVideoTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=None,
        ),
    )

    # Mochi
    TransformerBlockRegistry.register(
        model_class=MochiTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=1,
        ),
    )

    # Wan
    TransformerBlockRegistry.register(
        model_class=WanTransformerBlock,
        metadata=TransformerBlockMetadata(
            return_hidden_states_index=0,
            return_encoder_hidden_states_index=None,
        ),
    )


# fmt: off
def _skip_attention___ret___hidden_states(self, *args, **kwargs):
    hidden_states = kwargs.get("hidden_states", None)
    if hidden_states is None and len(args) > 0:
        hidden_states = args[0]
    return hidden_states


def _skip_attention___ret___hidden_states___encoder_hidden_states(self, *args, **kwargs):
    hidden_states = kwargs.get("hidden_states", None)
    encoder_hidden_states = kwargs.get("encoder_hidden_states", None)
    if hidden_states is None and len(args) > 0:
        hidden_states = args[0]
    if encoder_hidden_states is None and len(args) > 1:
        encoder_hidden_states = args[1]
    return hidden_states, encoder_hidden_states


_skip_proc_output_fn_Attention_AttnProcessor2_0 = _skip_attention___ret___hidden_states
_skip_proc_output_fn_Attention_CogView4AttnProcessor = _skip_attention___ret___hidden_states___encoder_hidden_states
# fmt: on