ddim.py 5.99 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import torch
from torch import nn

from ..configuration_utils import ConfigMixin
from .schedulers_utils import betas_for_alpha_bar, linear_beta_schedule


SAMPLING_CONFIG_NAME = "scheduler_config.json"


class DDIMScheduler(nn.Module, ConfigMixin):

    config_name = SAMPLING_CONFIG_NAME

    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        clip_predicted_image=True,
    ):
        super().__init__()
        self.register(
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )
        self.num_timesteps = int(timesteps)
        self.clip_image = clip_predicted_image

        if beta_schedule == "linear":
            betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        alphas = 1.0 - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)

        self.register_buffer("betas", betas.to(torch.float32))
        self.register_buffer("alphas", alphas.to(torch.float32))
        self.register_buffer("alphas_cumprod", alphas_cumprod.to(torch.float32))

#        alphas_cumprod_prev = torch.nn.functional.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
        # TODO(PVP) - check how much of these is actually necessary!
        # LDM only uses "fixed_small"; glide seems to use a weird mix of the two, ...
        # https://github.com/openai/glide-text2im/blob/69b530740eb6cef69442d6180579ef5ba9ef063e/glide_text2im/gaussian_diffusion.py#L246
#        variance = betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
#        if variance_type == "fixed_small":
#            log_variance = torch.log(variance.clamp(min=1e-20))
#        elif variance_type == "fixed_large":
#            log_variance = torch.log(torch.cat([variance[1:2], betas[1:]], dim=0))
#
#
#        self.register_buffer("log_variance", log_variance.to(torch.float32))

    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return torch.tensor(1.0)
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
94
    def get_orig_t(self, t, num_inference_steps):
        if t < 0:
            return -1
        return self.num_timesteps // num_inference_steps * t

Patrick von Platen's avatar
Patrick von Platen committed
95
    def get_variance(self, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
96
97
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
98
99
100
101
102
103
104
105
106
107

        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)

        return variance

Patrick von Platen's avatar
Patrick von Platen committed
108
    def compute_prev_image_step(self, residual, image, t, num_inference_steps, eta, output_pred_x_0=False):
Patrick von Platen's avatar
Patrick von Platen committed
109
110
111
112
113
114
115
116
117
118
119
120
        # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
        # Ideally, read DDIM paper in-detail understanding

        # Notation (<variable name> -> <name in paper>
        # - pred_noise_t -> e_theta(x_t, t)
        # - pred_original_image -> f_theta(x_t, t) or x_0
        # - std_dev_t -> sigma_t
        # - eta -> η
        # - pred_image_direction -> "direction pointingc to x_t"
        # - pred_prev_image -> "x_t-1"

        # 1. get actual t and t-1
Patrick von Platen's avatar
Patrick von Platen committed
121
122
        orig_t = self.get_orig_t(t, num_inference_steps)
        orig_prev_t = self.get_orig_t(t - 1, num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

        # 2. compute alphas, betas
        alpha_prod_t = self.get_alpha_prod(orig_t)
        alpha_prod_t_prev = self.get_alpha_prod(orig_prev_t)
        beta_prod_t = 1 - alpha_prod_t

        # 3. compute predicted original image from predicted noise also called
        # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_original_image = (image - beta_prod_t.sqrt() * residual) / alpha_prod_t.sqrt()

        # 4. Clip "predicted x_0"
        if self.clip_image:
            pred_original_image = torch.clamp(pred_original_image, -1, 1)

        # 5. compute variance: "sigma_t(η)" -> see formula (16)
        # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
        variance = self.get_variance(t, num_inference_steps)
        std_dev_t = eta * variance.sqrt()

        # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_image_direction = (1 - alpha_prod_t_prev - std_dev_t**2).sqrt() * residual

        # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
        pred_prev_image = alpha_prod_t_prev.sqrt() * pred_original_image + pred_image_direction

        return pred_prev_image

    def sample_noise(self, shape, device, generator=None):
        # always sample on CPU to be deterministic
        return torch.randn(shape, generator=generator).to(device)

    def __len__(self):
        return self.num_timesteps