Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ox696c
ktransformers
Commits
88f688e2
You need to sign in or sign up before continuing.
Commit
88f688e2
authored
Apr 16, 2025
by
Creeper-MZ
Browse files
更改token注入逻辑,减少token注入量,防止遗忘
Update chat.py Update chat.py Update chat.py
parent
a7e8d7c1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
92 additions
and
109 deletions
+92
-109
ktransformers/server/api/openai/endpoints/chat.py
ktransformers/server/api/openai/endpoints/chat.py
+92
-109
No files found.
ktransformers/server/api/openai/endpoints/chat.py
View file @
88f688e2
...
...
@@ -71,38 +71,37 @@ def getTools(buffer):
tool_calls_end_marker
=
"<|tool▁calls▁end|>"
extracted_tools
=
[]
working_buffer
=
buffer
# Iterate over all function calls
while
tool_call_begin_marker
in
working_buffer
and
tool_call_end_marker
in
working_buffer
:
# Find a complete function call
start_index
=
working_buffer
.
find
(
tool_call_begin_marker
)
end_index
=
working_buffer
.
find
(
tool_call_end_marker
)
+
len
(
tool_call_end_marker
)
if
start_index
==
-
1
or
end_index
==
-
1
or
start_index
>
end_index
:
logger
.
warning
(
"Not a function"
)
break
# Extract the full function call
full_tool_call
=
working_buffer
[
start_index
:
end_index
]
# Remove this function call from the working buffer to prevent duplicate processing
working_buffer
=
working_buffer
.
replace
(
full_tool_call
,
""
,
1
)
# Extract the function name
function_name_start
=
full_tool_call
.
find
(
tool_sep_marker
)
+
len
(
tool_sep_marker
)
function_name_end
=
full_tool_call
.
find
(
"
\n
"
,
function_name_start
)
function_name
=
full_tool_call
[
function_name_start
:
function_name_end
].
strip
()
# Extract JSON parameters
json_pattern
=
r
'```json\s*(.*?)\s*```'
json_match
=
re
.
search
(
json_pattern
,
full_tool_call
,
re
.
DOTALL
)
if
json_match
:
arguments_str
=
json_match
.
group
(
1
).
strip
()
# Generate tool call IDs
tool_call_id
=
f
"call_
{
uuid4
().
hex
[:
24
]
}
"
# Add to tool call list
extracted_tools
.
append
({
"id"
:
tool_call_id
,
...
...
@@ -112,45 +111,65 @@ def getTools(buffer):
"arguments"
:
arguments_str
}
})
logger
.
info
(
f
"Get Function:
{
function_name
}
"
)
else
:
logger
.
warning
(
f
"Unable to get function
,
function_name:
{
function_name
}
"
)
logger
.
warning
(
f
"Unable to get function
,
function_name:
{
function_name
}
"
)
logger
.
info
(
f
"Total
{
len
(
extracted_tools
)
}
Functions"
)
return
extracted_tools
def
get_tool_instructions
():
"""Return concise tool calling instructions in English"""
return
"""When you need real-time information or specialized operations, use function calls with this format:
<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>function_name
```json
{"param1": "value1", "param2": "value2"}
```<|tool▁call▁end|><|tool▁calls▁end|>
Only use functions when needed. Ensure proper JSON formatting with appropriate parameters."""
@
router
.
post
(
'/chat/completions'
,
tags
=
[
'openai'
])
async
def
chat_completion
(
request
:
Request
,
create
:
ChatCompletionCreate
):
id
=
str
(
uuid4
().
hex
)
#
1. Use system prompts to let models know how to use tools
#
Process messages with tool functionality if needed
enhanced_messages
=
list
(
create
.
messages
)
# If there is a tool and the first message is system, add instructions on how to use the tool in the system tip
if
create
.
tools
and
len
(
create
.
tools
)
>
0
and
(
enhanced_messages
[
0
].
role
==
Role
.
system
or
enhanced_messages
[
0
].
role
==
Role
.
user
):
tool_instructions
=
"你可以使用function_call,函数调用功能,目前,你可以使用以下工具
\n\n
"
# Check if tools are present
has_tools
=
create
.
tools
and
len
(
create
.
tools
)
>
0
if
has_tools
:
# Find the most recent user message to append tool information
latest_user_msg_idx
=
-
1
for
i
in
range
(
len
(
enhanced_messages
)
-
1
,
-
1
,
-
1
):
if
enhanced_messages
[
i
].
role
==
Role
.
user
:
latest_user_msg_idx
=
i
break
# Build the tool descriptions
tools_description
=
""
for
tool
in
create
.
tools
:
tool_instructions
+=
f
"
\"
function
\"
:{{
\"
name
\"
:
{
tool
.
function
.
name
}
,
\"
description
\"
:
{
tool
.
function
.
description
}
,
\"
parameters
\"
:
{
tool
.
function
.
parameters
}
}}
\n
"
# Modify tool usage guidelines to encourage JSON output
tool_instructions
+=
"name为函数名称,description为函数功能的描述,parameters中含有函数需要使用的参数和参数的描述, 其中required为必要参数
\n
"
tool_instructions
+=
"工具仅在用户明确提出,或者你认为需要调用工具的时候调用,注意,当需要高度实时性的信息比如时间或者最近的事情等,优先调用工具来获取!。当确实调用工具的关键信息时,你可以先向用户索取关键信息再调用工具
\n
"
tool_instructions
+=
"
\n
当你需要使用工具时,请以下列格式输出,格式为:
\n
"
tool_instructions
+=
'<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>name
\n
```json {"参数名": "参数值","参数名2": "参数值2"...}
\n
```<|tool▁call▁end|><|tool▁calls▁end|>
\n
'
tool_instructions
+=
'示例:
\n
<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>the_functnion_name_will_be_called
\n
```json {"arg1": "value1","arg2": "value2"}
\n
```<|tool▁call▁end|><|tool▁calls▁end|>
\n
'
tool_instructions
+=
"这样可以调用名为
\"
the_functnion_name_will_be_called
\"
,并将value1和value2传入参数arg1,arg2
\n
"
tool_instructions
+=
"不要尝试解释你在做什么,直接输出工具函数调用即可。确保函数调用语句格式正确且完整。"
enhanced_messages
[
0
].
content
=
enhanced_messages
[
0
].
content
+
"
\n\n
"
+
tool_instructions
# Requests processed
tools_description
+=
f
"Function:
{
tool
.
function
.
name
}
\n
Description:
{
tool
.
function
.
description
}
\n
Parameters:
{
tool
.
function
.
parameters
}
\n\n
"
# If first message is system, add concise tool instructions
if
enhanced_messages
[
0
].
role
==
Role
.
system
:
if
"function calls"
not
in
enhanced_messages
[
0
].
content
.
lower
():
enhanced_messages
[
0
].
content
+=
"
\n\n
"
+
get_tool_instructions
()
# For the latest user message, append tool information
if
latest_user_msg_idx
>=
0
:
# Add tool descriptions to the latest user message
enhanced_messages
[
latest_user_msg_idx
].
content
+=
f
"
\n\n
Available tools:
\n
{
tools_description
}
"
# Process request
interface
:
BackendInterfaceBase
=
get_interface
()
input_message
=
[
json
.
loads
(
m
.
model_dump_json
())
for
m
in
enhanced_messages
]
if
Config
().
api_key
!=
''
:
assert
request
.
headers
.
get
(
'Authorization'
,
''
).
split
()[
-
1
]
==
Config
().
api_key
if
create
.
stream
:
async
def
inner
():
chunk
=
ChatCompletionChunk
(
...
...
@@ -161,20 +180,21 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
model
=
Config
().
model_name
,
system_fingerprint
=
f
"fp_
{
uuid4
().
hex
[:
12
]
}
"
,
)
# Collect the full output of the model
, but specialize in processing tool calls
# Collect the full output of the model
full_content
=
""
buffer
=
""
# Used to temporarily store the current block of text
tool_call_mode
=
False
# Mark if a tool call is being processed
tool_calls
=
[]
# Store all detected tool calls
#
Customize model special to
ke
n
s
#
Tool call mar
ke
r
s
tool_calls_begin_marker
=
"<|tool▁calls▁begin|>"
tool_call_begin_marker
=
"<|tool▁call▁begin|>"
tool_sep_marker
=
"<|tool▁sep|>"
tool_call_end_marker
=
"<|tool▁call▁end|>"
tool_calls_end_marker
=
"<|tool▁calls▁end|>"
# Use check_client_connected for early stopping
async
for
res
in
interface
.
inference
(
input_message
,
id
,
create
.
temperature
,
create
.
top_p
):
if
isinstance
(
res
,
RawUsage
):
# Final return on utilization
...
...
@@ -188,11 +208,11 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
yield
chunk
elif
isinstance
(
res
,
tuple
)
and
len
(
res
)
==
2
:
token
,
finish_reason
=
res
# Detecting model-specific formatting tool call starts
if
not
tool_call_mode
and
tool_calls_begin_marker
in
buffer
+
token
:
tool_call_mode
=
True
# Adjust full_content to remove tool call section
if
buffer
.
endswith
(
tool_calls_begin_marker
):
full_content
=
full_content
[:
-
len
(
tool_calls_begin_marker
)]
...
...
@@ -200,7 +220,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
idx
=
(
buffer
+
token
).
find
(
tool_calls_begin_marker
)
full_content
=
full_content
[:
-
(
len
(
buffer
)
-
idx
)]
buffer
=
""
# Send the current cumulative text content (if any)
if
full_content
:
chunk
.
choices
=
[{
...
...
@@ -210,7 +230,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
}]
yield
chunk
full_content
=
""
# Accumulation of content in non-tool call mode
if
not
tool_call_mode
:
full_content
+=
token
...
...
@@ -221,18 +241,17 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
else
:
# In tool call mode, continue to collect tool call related text
buffer
+=
token
# If the tool call end marker is found
if
tool_calls_end_marker
in
buffer
:
try
:
# Parsing Calling Text Extraction Tool Calling Information
# Parse and extract tool calling information
tool_calls
=
getTools
(
buffer
)
if
len
(
tool_calls
):
# reset state
tool_call_mode
=
False
buffer
=
""
# Send tool call events
for
idx
,
tool_call
in
enumerate
(
tool_calls
):
# First tool call message
...
...
@@ -254,7 +273,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
"finish_reason"
:
None
}]
yield
chunk
# Sending Parameters
chunk
.
choices
=
[{
"index"
:
0
,
...
...
@@ -267,7 +286,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
"finish_reason"
:
None
}]
yield
chunk
# Send Completion Message
chunk
.
choices
=
[{
"index"
:
0
,
...
...
@@ -275,7 +294,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
"finish_reason"
:
"tool_calls"
}]
yield
chunk
# No further processing after return
return
else
:
...
...
@@ -287,7 +306,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
logger
.
error
(
f
"Error processing tool call:
{
e
}
"
)
tool_call_mode
=
False
buffer
=
""
# Normal text output (only in non-tool call mode)
if
not
tool_call_mode
and
token
:
if
finish_reason
is
not
None
:
...
...
@@ -307,17 +326,17 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
"finish_reason"
:
None
}]
yield
chunk
# If gotten this far without returning, it means that the full tool call was not detected
# Send Routine Completion Message
if
not
tool_call_mode
:
chunk
.
choices
=
[{
"index"
:
0
,
"delta"
:
{},
"index"
:
0
,
"delta"
:
{},
"finish_reason"
:
"stop"
}]
yield
chunk
return
chat_stream_response
(
request
,
inner
())
else
:
# non streaming response processing
...
...
@@ -326,14 +345,14 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
tool_calls
=
[]
buffer
=
""
tool_call_mode
=
False
# Custom model special markers
tool_calls_begin_marker
=
"<|tool▁calls▁begin|>"
tool_call_begin_marker
=
"<|tool▁call▁begin|>"
tool_sep_marker
=
"<|tool▁sep|>"
tool_call_end_marker
=
"<|tool▁call▁end|>"
tool_calls_end_marker
=
"<|tool▁calls▁end|>"
async
for
res
in
interface
.
inference
(
input_message
,
id
,
create
.
temperature
,
create
.
top_p
):
if
isinstance
(
res
,
RawUsage
):
raw_usage
=
res
...
...
@@ -344,11 +363,11 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
)
elif
isinstance
(
res
,
tuple
)
and
len
(
res
)
==
2
:
token
,
finish_reason
=
res
# Detecting the start of model-specific formatting tool calls
if
not
tool_call_mode
and
tool_calls_begin_marker
in
buffer
+
token
:
tool_call_mode
=
True
# Adjust full_content to remove tool call section
if
buffer
.
endswith
(
tool_calls_begin_marker
):
full_content
=
full_content
[:
-
len
(
tool_calls_begin_marker
)]
...
...
@@ -356,7 +375,7 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
idx
=
(
buffer
+
token
).
find
(
tool_calls_begin_marker
)
full_content
=
full_content
[:
-
(
len
(
buffer
)
-
idx
)]
buffer
=
""
# Accumulation of content in non-tool call mode
if
not
tool_call_mode
:
full_content
+=
token
...
...
@@ -367,54 +386,18 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
else
:
# In tool call mode, continue to collect tool call related text
buffer
+=
token
# If the tool call end marker is found
if
tool_calls_end_marker
in
buffer
:
try
:
# Parsing Calling Text Extraction Tool Calling Information
full_tool_call
=
buffer
# Extract function name
function_name_start
=
full_tool_call
.
find
(
tool_sep_marker
)
+
len
(
tool_sep_marker
)
function_name_end
=
full_tool_call
.
find
(
"
\n
"
,
function_name_start
)
function_name
=
full_tool_call
[
function_name_start
:
function_name_end
].
strip
()
# Extract JSON Parameters - Extracts the content between ```json and ```.
json_pattern
=
r
'```json\s*(.*?)\s*```'
json_match
=
re
.
search
(
json_pattern
,
full_tool_call
,
re
.
DOTALL
)
if
json_match
:
arguments_str
=
json_match
.
group
(
1
).
strip
()
# Generate tool call IDs
tool_call_id
=
f
"call_
{
uuid4
().
hex
[:
24
]
}
"
# Add to tool call list
tool_calls
.
append
({
"id"
:
tool_call_id
,
"index"
:
0
,
"type"
:
"function"
,
"function"
:
{
"name"
:
function_name
,
"arguments"
:
arguments_str
}
})
# If the tool call is successfully parsed, set the reason for completion
finish_reason
=
"tool_calls"
# reset state
tool_call_mode
=
False
buffer
=
""
else
:
# JSON extraction failed, probably incomplete formatting
logger
.
warning
(
"Failed to extract JSON from tool call"
)
tool_call_mode
=
False
buffer
=
""
except
Exception
as
e
:
logger
.
error
(
f
"Error processing tool call:
{
e
}
"
)
tool_call_mode
=
False
buffer
=
""
# Extract tool calls
tool_calls
=
getTools
(
buffer
)
if
tool_calls
:
finish_reason
=
"tool_calls"
# Reset state
tool_call_mode
=
False
buffer
=
""
# Build Response
response
=
{
"id"
:
id
,
...
...
@@ -430,8 +413,8 @@ async def chat_completion(request: Request, create: ChatCompletionCreate):
},
"finish_reason"
:
finish_reason
or
"stop"
}],
"usage"
:
usage
.
__dict__
,
"usage"
:
usage
.
__dict__
if
'usage'
in
locals
()
else
None
,
"system_fingerprint"
:
f
"fp_
{
uuid4
().
hex
[:
12
]
}
"
}
return
response
return
response
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment