"vscode:/vscode.git/clone" did not exist on "5b686addc0081b90653b3ff61b68d373c3d82f80"
Commit 74bb7fdc authored by qiyuxinlin's avatar qiyuxinlin
Browse files

Merge remote-tracking branch 'dev/support-amx-2'

parents ba92cf1a be4b27e8
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Qwen3MoE model configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation
from transformers.utils import logging
logger = logging.get_logger(__name__)
class Qwen3MoeConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Qwen3MoeModel`]. It is used to instantiate a
Qwen3MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of [Qwen/Qwen3-MoE-15B-A2B](https://huggingface.co/Qwen/Qwen3-15B-A2B).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 151936):
Vocabulary size of the Qwen3MoE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Qwen3MoeModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 6144):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 32768):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
use_sliding_window (`bool`, *optional*, defaults to `False`):
Whether to use sliding window attention.
sliding_window (`int`, *optional*, defaults to 4096):
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
max_window_layers (`int`, *optional*, defaults to 28):
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
decoder_sparse_step (`int`, *optional*, defaults to 1):
The frequency of the MoE layer.
moe_intermediate_size (`int`, *optional*, defaults to 768):
Intermediate size of the routed expert.
num_experts_per_tok (`int`, *optional*, defaults to 8):
Number of selected experts.
num_experts (`int`, *optional*, defaults to 128):
Number of routed experts.
norm_topk_prob (`bool`, *optional*, defaults to `False`):
Whether to normalize the topk probabilities.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
mlp_only_layers (`List[int]`, *optional*, defaults to `[]`):
Indicate which layers use Qwen3MoeMLP rather than Qwen3MoeSparseMoeBlock
The list contains layer index, from 0 to num_layers-1 if we have num_layers layers
If `mlp_only_layers` is empty, `decoder_sparse_step` is used to determine the sparsity.
```python
>>> from transformers import Qwen3MoeModel, Qwen3MoeConfig
>>> # Initializing a Qwen3MoE style configuration
>>> configuration = Qwen3MoeConfig()
>>> # Initializing a model from the Qwen3-15B-A2B" style configuration
>>> model = Qwen3MoeModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "qwen3_moe"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `Qwen3Moe`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
base_model_pp_plan = {
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
"norm": (["hidden_states"], ["hidden_states"]),
}
def __init__(
self,
vocab_size=151936,
hidden_size=2048,
intermediate_size=6144,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=4,
hidden_act="silu",
max_position_embeddings=32768,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
use_sliding_window=False,
sliding_window=4096,
max_window_layers=28,
attention_dropout=0.0,
decoder_sparse_step=1,
moe_intermediate_size=768,
num_experts_per_tok=8,
num_experts=128,
norm_topk_prob=False,
output_router_logits=False,
router_aux_loss_coef=0.001,
mlp_only_layers=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.use_sliding_window = use_sliding_window
self.sliding_window = sliding_window if use_sliding_window else None
self.max_window_layers = max_window_layers
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
# MoE arguments
self.decoder_sparse_step = decoder_sparse_step
self.moe_intermediate_size = moe_intermediate_size
self.num_experts_per_tok = num_experts_per_tok
self.num_experts = num_experts
self.norm_topk_prob = norm_topk_prob
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.mlp_only_layers = [] if mlp_only_layers is None else mlp_only_layers
super().__init__(
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["Qwen3MoeConfig"]
\ No newline at end of file
......@@ -275,3 +275,59 @@ class KDeepSeekV3Cache(nn.Module):
return page_idx, page_offset
class KGQACache(nn.Module):
def __init__(
self,
config: PretrainedConfig,
page_size: int = 256,
dtype=torch.bfloat16,
device=torch.device("cuda:0"),
):
super().__init__()
self.config = config
self.dtype = dtype
self.device = device
self.page_size = page_size
self.k_caches = []
self.v_caches = []
def load(self, inference_context: sched_ext.InferenceContext):
print(self.config.num_hidden_layers)
for i in range(self.config.num_hidden_layers):
self.k_caches.append(
inference_context.k_cache[0][i]
)
self.v_caches.append(
inference_context.v_cache[0][i]
)
self.max_cache_len = self.k_caches[0].shape[0]*self.k_caches[0].shape[1]
def get_page_table(self, cache_position: torch.Tensor, q_indptr: torch.Tensor, kv_indptr: torch.Tensor, kv_indices: torch.Tensor, bsz_tensors: torch.tensor):
page_offset = cache_position % self.page_size
page_idx_local = cache_position // self.page_size
query_ids = torch.zeros_like(cache_position)
for i in range(len(q_indptr) - 1):
start_idx = q_indptr[i]
end_idx = q_indptr[i + 1]
query_ids[start_idx:end_idx] = i
page_idx = torch.zeros_like(page_idx_local)
for i in range(bsz_tensors[0]):
query_id = query_ids[i]
local_block = page_idx_local[i]
start_block = kv_indptr[query_id]
if local_block < kv_indptr[query_id + 1] - kv_indptr[query_id]:
page_idx[i] = kv_indices[start_block + local_block]
return page_idx, page_offset
def get_k_cache(self, layer_idx):
return self.k_caches[layer_idx]
def get_v_cache(self, layer_idx):
return self.v_caches[layer_idx]
\ No newline at end of file
"""
Date: 2024-11-06 10:05:11
LastEditors: djw
LastEditTime: 2024-11-13 07:50:51
"""
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
from ktransformers.models.custom_cache import KGQACache
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeModel, Qwen2MoePreTrainedModel
from ktransformers.models.configuration_qwen2_moe import Qwen2MoeConfig
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
torch.set_grad_enabled(False)
torch.set_default_dtype(torch.bfloat16)
import flashinfer
class KQwen2MoeForCausalLM(Qwen2MoePreTrainedModel):
cache: KGQACache
use_cuda_graph = False
def __init__(
self,
config: Qwen2MoeConfig,
cache,
):
super().__init__(config)
self.model = Qwen2MoeModel(config)
self.config = config
self.cache = cache
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.attn = [None] * 10
def init_wrapper(self, use_cuda_graph, device, max_batch_token, max_batch_size, max_pages, cuda_graph_idx = 0):
self.attn[cuda_graph_idx] = flashInferAttn(use_cuda_graph=use_cuda_graph, max_batch_token=max_batch_token, max_batch_size=max_batch_size, max_pages=max_pages, device=device)
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
features = []
for i in range(batch.batch_size):
tokens = batch.minibatch.tokens.contiguous()
feature = (
self.model.embed_tokens(tokens.to(torch.device('cpu')))
.to(torch.bfloat16)
.to(device=device)
)
features.append(feature)
return features
def forward(
self,
batch: ForwardBatchInput | None = None,
features: List[torch.Tensor] | None = None,
bsz_tensors: torch.Tensor | None = None,
num_tokens_tensors: torch.Tensor | None = None,
page_idx: torch.Tensor | None = None,
page_offset: torch.Tensor | None = None,
cuda_graph_idx: int | None = 0
) -> ForwardBatchOutput:
current_stream = torch.cuda.current_stream()
forward_batch_output = ForwardBatchOutput()
hidden_states = features[0]
self.attn[cuda_graph_idx].calc_batch_indices(hidden_states.shape[0])
with torch.cuda.stream(current_stream):
residual = torch.zeros_like(hidden_states)
for i, decode_layer in enumerate(self.model.layers):
if self.model.transfer_map is not None and i in self.model.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.model.transfer_map[i]
if cur_device not in self.model.stream_device_map:
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.model.transfer_map[i], non_blocking=True
)
batch.minibatch.position_ids = (
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
if batch.minibatch.position_ids is not None
else None
)
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.self_attn(hidden_states, self.cache,
position_ids=batch.minibatch.position_ids,
wrapper=self.attn[cuda_graph_idx], bsz_tensors=num_tokens_tensors,
page_idx=page_idx,
page_offset=page_offset
)
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors, cuda_graph_idx)
hidden_states = hidden_states.squeeze(0)
forward_batch_output = ForwardBatchOutput()
with torch.cuda.stream(current_stream):
local_logit = self.lm_head(self.model.norm(hidden_states, num_tokens_tensors, residual)[0], num_tokens_tensors)
forward_batch_output.logits.append(local_logit)
return forward_batch_output
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
num_q_heads: int,
num_kv_heads: int,
head_dim: int,
page_size: int,
causal: bool,
q_data_type: torch.dtype,
kv_data_type: torch.dtype,
cuda_graph_idx: int = 0
):
minibatch = batch.minibatch
self.attn[cuda_graph_idx].plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
minibatch.kv_last_page_len, bsz_tensors, num_tokens_tensors,num_q_heads, num_kv_heads, head_dim, page_size, causal=causal, q_data_type=q_data_type, kv_data_type=kv_data_type)
\ No newline at end of file
"""
Date: 2024-11-06 10:05:11
LastEditors: djw
LastEditTime: 2024-11-13 07:50:51
"""
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ktransformers.server.balance_serve.inference.forward_batch import ForwardBatchInput, ForwardBatchOutput
from ktransformers.models.custom_cache import KGQACache
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeModel, Qwen3MoePreTrainedModel
from ktransformers.models.configuration_qwen3_moe import Qwen3MoeConfig
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
torch.set_grad_enabled(False)
torch.set_default_dtype(torch.bfloat16)
import flashinfer
class KQwen3MoeForCausalLM(Qwen3MoePreTrainedModel):
cache: KGQACache
use_cuda_graph = False
def __init__(
self,
config: Qwen3MoeConfig,
cache = None,
):
super().__init__(config)
self.model = Qwen3MoeModel(config)
self.config = config
self.cache = cache
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.attn = [None] * 10
def init_wrapper(self, use_cuda_graph, device, max_batch_token, max_batch_size, max_pages, cuda_graph_idx = 0):
self.attn[cuda_graph_idx] = flashInferAttn(use_cuda_graph=use_cuda_graph, max_batch_token=max_batch_token, max_batch_size=max_batch_size, max_pages=max_pages, device=device)
def batch_embeddings(self, batch: ForwardBatchInput, device="cuda:0"):
features = []
for i in range(batch.batch_size):
tokens = batch.minibatch.tokens.contiguous()
feature = (
self.model.embed_tokens(tokens.to(torch.device('cpu')))
.to(torch.bfloat16)
.to(device=device)
)
features.append(feature)
return features
def forward(
self,
batch: ForwardBatchInput | None = None,
features: List[torch.Tensor] | None = None,
bsz_tensors: torch.Tensor | None = None,
num_tokens_tensors: torch.Tensor | None = None,
page_idx: torch.Tensor | None = None,
page_offset: torch.Tensor | None = None,
cuda_graph_idx: int | None = 0
) -> ForwardBatchOutput:
current_stream = torch.cuda.current_stream()
forward_batch_output = ForwardBatchOutput()
hidden_states = features[0]
self.attn[cuda_graph_idx].calc_batch_indices(hidden_states.shape[0])
with torch.cuda.stream(current_stream):
residual = torch.zeros_like(hidden_states)
for i, decode_layer in enumerate(self.model.layers):
if self.model.transfer_map is not None and i in self.model.transfer_map:
prev_stream = torch.cuda.current_stream()
cur_device = self.model.transfer_map[i]
if cur_device not in self.model.stream_device_map:
self.model.stream_device_map[cur_device] = torch.cuda.Stream(cur_device)
torch.cuda.set_device(cur_device)
self.model.stream_device_map[cur_device].wait_stream(prev_stream)
torch.cuda.set_stream(self.model.stream_device_map[cur_device])
hidden_states = hidden_states.to(
self.model.transfer_map[i], non_blocking=True
)
batch.minibatch.position_ids = (
batch.minibatch.position_ids.to(self.model.transfer_map[i], non_blocking=True)
if batch.minibatch.position_ids is not None
else None
)
hidden_states, residual = decode_layer.input_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.self_attn(hidden_states, self.cache,
position_ids=batch.minibatch.position_ids,
wrapper=self.attn[cuda_graph_idx], bsz_tensors=num_tokens_tensors,
page_idx=page_idx,
page_offset=page_offset
)
hidden_states, residual = decode_layer.post_attention_layernorm(hidden_states, num_tokens_tensors, residual)
hidden_states = decode_layer.mlp(hidden_states.unsqueeze(0), num_tokens_tensors, cuda_graph_idx)
hidden_states = hidden_states.squeeze(0)
forward_batch_output = ForwardBatchOutput()
with torch.cuda.stream(current_stream):
local_logit = self.lm_head(self.model.norm(hidden_states, num_tokens_tensors, residual)[0], num_tokens_tensors)
forward_batch_output.logits.append(local_logit)
return forward_batch_output
def flash_infer_attn_plan(self, batch: ForwardBatchInput, bsz_tensors, num_tokens_tensors,
num_q_heads: int,
num_kv_heads: int,
head_dim: int,
page_size: int,
causal: bool,
q_data_type: torch.dtype,
kv_data_type: torch.dtype,
cuda_graph_idx: int = 0
):
minibatch = batch.minibatch
self.attn[cuda_graph_idx].plan(minibatch.q_indptr, minibatch.kv_indptr, minibatch.kv_indices,
minibatch.kv_last_page_len, bsz_tensors, num_tokens_tensors, num_q_heads, num_kv_heads, head_dim, page_size, causal=causal, q_data_type=q_data_type, kv_data_type=kv_data_type)
\ No newline at end of file
This diff is collapsed.
......@@ -411,4 +411,30 @@ class RotaryEmbeddingV4(BaseInjectedModule):
self.inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
# self.register_buffer("inv_freq", inv_freq, persistent=False)
# For BC we register cos and sin cached
self.max_seq_len_cached = max_position_embeddings
\ No newline at end of file
self.max_seq_len_cached = max_position_embeddings
class KQwen3MoeRotaryEmbedding(BaseInjectedModule, DeepseekV2RotaryEmbedding):
def __init__(
self,
key: str,
gguf_loader: GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
# device: str = "cuda",
generate_device: str = "cuda",
prefill_device: str = "cuda",
**kwargs,
):
BaseInjectedModule.__init__(
self, key, gguf_loader, config, orig_module, prefill_device, generate_device, **kwargs
)
self.orig_module.__init__(
config,
)
self.generate_device = generate_device
self.prefill_device = prefill_device
def load(self):
self.orig_module.__init__(
self.orig_module.config
)
\ No newline at end of file
......@@ -762,92 +762,3 @@ class KLlamaAttention(BaseInjectedModule):
attn_weights = None
return attn_output, attn_weights, past_key_value
class flashinfer_attn(BaseInjectedModule, DeepseekV2Attention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
def get_absorbed(self) -> Tuple[torch.Tensor, torch.Tensor]:
if not (hasattr(self, 'q_absorb') and hasattr(self, 'out_absorb')):
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :].reshape(-1, self.kv_lora_rank)
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :].reshape(-1, self.kv_lora_rank)
self.q_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.qk_nope_head_dim,
bias=False, dtype=q_absorb.dtype, device=q_absorb.device)
self.q_absorb.weight.data = q_absorb
self.out_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.v_head_dim,
bias=False, dtype=out_absorb.dtype, device=out_absorb.device)
self.out_absorb.weight.data = out_absorb
#del self.orig_module.kv_b_proj
q_absorb = self.q_absorb.weight.view(self.num_heads, self.qk_nope_head_dim, self.kv_lora_rank)
out_absorb = self.out_absorb.weight.view(self.num_heads, self.v_head_dim, self.kv_lora_rank)
return q_absorb, out_absorb
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KDeepSeekV3Cache,
position_ids: torch.Tensor,
wrapper: BatchMLAPagedAttentionWrapper,
num_tokens_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states, num_tokens_tensors)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states, num_tokens_tensors), num_tokens_tensors), num_tokens_tensors)
q = q.view(q_len, self.num_heads, self.q_head_dim)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states, num_tokens_tensors)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
compressed_kv = compressed_kv.contiguous()
compressed_kv = self.kv_a_layernorm(compressed_kv, num_tokens_tensors)
k_pe = k_pe.view(q_len, 1, self.qk_rope_head_dim)
compressed_kv = compressed_kv.view(q_len, 1, self.kv_lora_rank)
cos, sin = self.rotary_emb(q_pe, position_ids.unsqueeze(0))
q_pe, k_pe = apply_rotary_pos_emb(q_pe.unsqueeze(0), k_pe.unsqueeze(0), cos, sin, unsqueeze_dim=2)
q_pe = q_pe.squeeze(0)
if kv_cache is not None:
# page_idx, page_offset = kv_cache.get_page_table(position_ids, q_indptr, kv_indptr, kv_indices)
cache_kwargs = {"sin": sin, "cos": cos, "page_idx": page_idx, "page_offset": page_offset} # Specific to RoPE models
compressed_kv_with_k_pe = kv_cache.update(compressed_kv.unsqueeze(0), k_pe, self.layer_idx, page_idx, page_offset, cache_kwargs)
compressed_kv = compressed_kv_with_k_pe [:, :, :, :self.kv_lora_rank].view(-1, kv_cache.page_size, self.kv_lora_rank)
k_pe = compressed_kv_with_k_pe [:, :, :, self.kv_lora_rank:].view(-1, kv_cache.page_size, self.qk_rope_head_dim)
q_absorb, out_absorb = self.get_absorbed()
q_nope = q_nope.transpose(0, 1) # q_len is 1, no GPU overhead, same below
q_nope = torch.matmul(q_nope, q_absorb) # batched MM
q_nope = q_nope.transpose(0, 1)
# q_nope.squeeze_(1)
# q_pe.squeeze_(1)
attn_output = wrapper.run(q_nope, q_pe, compressed_kv, k_pe).view(q_len, self.num_heads, self.kv_lora_rank)
attn_output = attn_output.transpose(0, 1)
attn_output = torch.matmul(attn_output, out_absorb.mT) # [self.num_heads, q_len, self.v_head_dim]
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output, num_tokens_tensors)
return attn_output
'''
Description :
Author : Boxin Zhang
Version : 0.2.5
Copyright (c) 2024 by KVCache.AI, All Rights Reserved.
'''
import torch
from torch import nn
from ktransformers.models.modeling_deepseek import DeepseekV2Attention, apply_rotary_pos_emb
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeAttention
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeAttention
from typing import Optional, Tuple
from ktransformers.operators.base_operator import BaseInjectedModule
from ktransformers.util.custom_gguf import GGUFLoader
import logging
from transformers.configuration_utils import PretrainedConfig
from flashinfer import BatchMLAPagedAttentionWrapper
from ktransformers.operators.flashinfer_batch_prefill_wrapper import flashInferAttn
from ktransformers.models.custom_cache import KDeepSeekV3Cache, KGQACache
logger = logging.getLogger("attention")
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
class flashinfer_attn(BaseInjectedModule, DeepseekV2Attention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
def get_absorbed(self) -> Tuple[torch.Tensor, torch.Tensor]:
if not (hasattr(self, 'q_absorb') and hasattr(self, 'out_absorb')):
kv_b_proj = self.kv_b_proj.weight.view(self.num_heads, -1, self.kv_lora_rank)
q_absorb = kv_b_proj[:, :self.qk_nope_head_dim, :].reshape(-1, self.kv_lora_rank)
out_absorb = kv_b_proj[:, self.qk_nope_head_dim:, :].reshape(-1, self.kv_lora_rank)
self.q_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.qk_nope_head_dim,
bias=False, dtype=q_absorb.dtype, device=q_absorb.device)
self.q_absorb.weight.data = q_absorb
self.out_absorb = nn.Linear(self.kv_lora_rank, self.num_heads * self.v_head_dim,
bias=False, dtype=out_absorb.dtype, device=out_absorb.device)
self.out_absorb.weight.data = out_absorb
#del self.orig_module.kv_b_proj
q_absorb = self.q_absorb.weight.view(self.num_heads, self.qk_nope_head_dim, self.kv_lora_rank)
out_absorb = self.out_absorb.weight.view(self.num_heads, self.v_head_dim, self.kv_lora_rank)
return q_absorb, out_absorb
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KDeepSeekV3Cache,
position_ids: torch.Tensor,
wrapper: BatchMLAPagedAttentionWrapper,
num_tokens_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
if self.q_lora_rank is None:
q = self.q_proj(hidden_states, num_tokens_tensors)
else:
q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states, num_tokens_tensors), num_tokens_tensors), num_tokens_tensors)
q = q.view(q_len, self.num_heads, self.q_head_dim)
q_nope, q_pe = torch.split(
q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
compressed_kv = self.kv_a_proj_with_mqa(hidden_states, num_tokens_tensors)
compressed_kv, k_pe = torch.split(
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
)
compressed_kv = compressed_kv.contiguous()
compressed_kv = self.kv_a_layernorm(compressed_kv, num_tokens_tensors)
k_pe = k_pe.view(q_len, 1, self.qk_rope_head_dim)
compressed_kv = compressed_kv.view(q_len, 1, self.kv_lora_rank)
cos, sin = self.rotary_emb(q_pe, position_ids.unsqueeze(0))
q_pe, k_pe = apply_rotary_pos_emb(q_pe.unsqueeze(0), k_pe.unsqueeze(0), cos, sin, unsqueeze_dim=2)
q_pe = q_pe.squeeze(0)
if kv_cache is not None:
# page_idx, page_offset = kv_cache.get_page_table(position_ids, q_indptr, kv_indptr, kv_indices)
cache_kwargs = {"sin": sin, "cos": cos, "page_idx": page_idx, "page_offset": page_offset} # Specific to RoPE models
compressed_kv_with_k_pe = kv_cache.update(compressed_kv.unsqueeze(0), k_pe, self.layer_idx, page_idx, page_offset, cache_kwargs)
compressed_kv = compressed_kv_with_k_pe [:, :, :, :self.kv_lora_rank].view(-1, kv_cache.page_size, self.kv_lora_rank)
k_pe = compressed_kv_with_k_pe [:, :, :, self.kv_lora_rank:].view(-1, kv_cache.page_size, self.qk_rope_head_dim)
q_absorb, out_absorb = self.get_absorbed()
q_nope = q_nope.transpose(0, 1) # q_len is 1, no GPU overhead, same below
q_nope = torch.matmul(q_nope, q_absorb) # batched MM
q_nope = q_nope.transpose(0, 1)
# q_nope.squeeze_(1)
# q_pe.squeeze_(1)
attn_output = wrapper.run(q_nope, q_pe, compressed_kv, k_pe).view(q_len, self.num_heads, self.kv_lora_rank)
attn_output = attn_output.transpose(0, 1)
attn_output = torch.matmul(attn_output, out_absorb.mT) # [self.num_heads, q_len, self.v_head_dim]
attn_output = attn_output.transpose(0, 1)
attn_output = attn_output.reshape(q_len, self.num_heads * self.v_head_dim)
attn_output = self.o_proj(attn_output, num_tokens_tensors)
return attn_output
class KQwen2MoeAttention(BaseInjectedModule, Qwen2MoeAttention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KGQACache,
position_ids: torch.Tensor,
wrapper: flashInferAttn,
bsz_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states, bsz_tensors)
key_states = self.k_proj(hidden_states, bsz_tensors)
value_states = self.v_proj(hidden_states, bsz_tensors)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_key_value_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_key_value_heads, self.head_dim)
cos, sin = self.rotary_emb(value_states.unsqueeze(0), position_ids.unsqueeze(0))
query_states, key_states = self.apply_rotary_pos_emb(query_states.unsqueeze(0), key_states.unsqueeze(0), cos, sin, unsqueeze_dim=2)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
value_states = value_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
k_cache = kv_cache.get_k_cache(self.layer_idx)
v_cache = kv_cache.get_v_cache(self.layer_idx)
attn_output = wrapper.forward(query_states, k_cache, v_cache, key_states, value_states)
attn_output = self.o_proj(attn_output.view(q_len, self.num_heads * self.head_dim), bsz_tensors)
return attn_output
class KQwen3MoeAttention(BaseInjectedModule, Qwen3MoeAttention):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
chunck_size: int = 1000,
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.layer_idx)
self.chunck_size = chunck_size # TODO, generate chunck_size automatically.
# Copied from transformers.models.mistral.modeling_mistral.apply_rotary_pos_emb
def apply_rotary_pos_emb(self, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def forward(self,
hidden_states: torch.Tensor,
kv_cache: KGQACache,
position_ids: torch.Tensor,
wrapper: flashInferAttn,
bsz_tensors: torch.Tensor,
page_idx: torch.Tensor,
page_offset: torch.Tensor,
):
q_len, _ = hidden_states.size()
bsz_tensors_q = bsz_tensors * self.num_heads
bsz_tensors_kv = bsz_tensors * self.num_key_value_heads
query_states = self.q_norm(self.q_proj(hidden_states, bsz_tensors), bsz_tensors_q)
key_states = self.k_norm(self.k_proj(hidden_states, bsz_tensors), bsz_tensors_kv)
value_states = self.v_proj(hidden_states, bsz_tensors)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(q_len, self.num_key_value_heads, self.head_dim)
value_states = value_states.view(q_len, self.num_key_value_heads, self.head_dim)
cos, sin = self.rotary_emb(value_states.unsqueeze(0), position_ids.unsqueeze(0))
query_states, key_states = self.apply_rotary_pos_emb(query_states.unsqueeze(0), key_states.unsqueeze(0), cos, sin, unsqueeze_dim=2)
query_states = query_states.view(q_len, self.num_heads, self.head_dim)
key_states = key_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
value_states = value_states.view(
q_len, self.num_key_value_heads, self.head_dim
)
k_cache = kv_cache.get_k_cache(self.layer_idx)
v_cache = kv_cache.get_v_cache(self.layer_idx)
attn_output = wrapper.forward(query_states, k_cache, v_cache, key_states, value_states)
attn_output = self.o_proj(attn_output.view(q_len, self.num_heads * self.head_dim), bsz_tensors)
return attn_output
......@@ -25,8 +25,9 @@ sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext
sys.path.append(os.path.join(os.path.dirname(__file__), "..", "ktransformers_ext", "build", "Debug"))
import cpuinfer_ext
from cpuinfer_ext.moe import MOEConfig, MOE
from cpuinfer_ext.moe import AMX_MOEConfig, AMXBF16_MOE, AMXInt8_MOE
import ctypes
from ktransformers.util.custom_gguf import GGUFLoader
from ktransformers.util.custom_gguf import GGMLQuantizationType, GGUFLoader
from ktransformers.util.utils import InferenceState
from ktransformers.server.config.config import Config
from transformers.activations import ACT2FN
......@@ -141,6 +142,7 @@ class KExpertsCPU(KExpertsBase):
assert device.lower() == "cpu", "KExpertsCPU can only be loaded on CPU"
self.n_routed_experts = n_routed_experts
self.out_device = out_device
self.backend = kwargs.get("backend", "llamafile")
def load(self, w: dict | nn.Parameter | tuple | None = None, device:str|None = None, warmup:bool = False):
if device:
......@@ -163,27 +165,62 @@ class KExpertsCPU(KExpertsBase):
)
# print(self.gate_qtype, self.up_qtype, self.down_qtype)
n_routed_experts = self.n_routed_experts
self.cpu_infer = KExpertsCPU.CPU_INFER
# n_routed_experts = len(self.orig_module)
moe_config = MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
64,
10,
1024,
gate_ptr,
up_ptr,
down_ptr,
self.gate_type,
self.up_type,
self.down_type,
30, # TODO: get from model.dtype
)
if self.backend == "llamafile":
moe_config = MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
64,
10,
1024,
gate_ptr,
up_ptr,
down_ptr,
self.gate_type,
self.up_type,
self.down_type,
30, # TODO: get from model.dtype
)
self.moe = MOE(moe_config)
elif self.backend == "AMXBF16":
assert self.gate_type == GGMLQuantizationType.BF16
assert self.up_type == GGMLQuantizationType.BF16
assert self.down_type == GGMLQuantizationType.BF16
moe_config = AMX_MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
25600,
gate_ptr,
up_ptr,
down_ptr,
)
self.moe = AMXBF16_MOE(moe_config)
self.cpu_infer.submit(self.moe.load_weights())
self.cpu_infer.sync()
elif self.backend == "AMXInt8":
assert self.gate_type == GGMLQuantizationType.BF16
assert self.up_type == GGMLQuantizationType.BF16
assert self.down_type == GGMLQuantizationType.BF16
moe_config = AMX_MOEConfig(
n_routed_experts,
self.config.num_experts_per_tok,
self.config.hidden_size,
self.config.moe_intermediate_size,
25600,
gate_ptr,
up_ptr,
down_ptr,
)
self.moe = AMXInt8_MOE(moe_config)
self.cpu_infer.submit(self.moe.load_weights())
self.cpu_infer.sync()
# print(n_routed_experts, hidden_size, moe_intermediate_size)
num_experts_per_tok = self.config.num_experts_per_tok
self.moe = MOE(moe_config)
self.cpu_infer = KExpertsCPU.CPU_INFER
if warmup:
self.cpu_infer.submit(self.moe.warm_up())
self.cpu_infer.sync()
......@@ -652,6 +689,7 @@ class KTransformersExperts(BaseInjectedModule, KExpertsBase):
from ktransformers.models.modeling_deepseek import DeepseekV2MoE
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3MoE
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeSparseMoeBlock
from ktransformers.models.modeling_qwen3_moe import Qwen3MoeSparseMoeBlock
from ktransformers.models.modeling_mixtral import MixtralSparseMoeBlock
......@@ -1230,3 +1268,229 @@ class KTransformersExpertsV2(BaseInjectedModule, KExpertsBase):
self.unload()
else:
raise ValueError("mode must be either InferenceState.GENERATE, InferenceState.PREFILL or InferenceState.UNLOAD")
class KQwen2MoeSparseMoeBlockV2(BaseInjectedModule, Qwen2MoeSparseMoeBlock):
def forward(self, hidden_states, bsz_tensor, cuda_graph_idx=0):
orig_shape = hidden_states.shape
sequence_length = orig_shape[1]
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
router_logits = self.gate(hidden_states, bsz_tensor)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# only for generate phase
if hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing(): # TODO: this branch cause jit bug
self.experts.generate_experts.submit_for_one_decode(hidden_states, selected_experts, routing_weights, bsz_tensor, cuda_graph_idx)
y_ = self.shared_expert(hidden_states, bsz_tensor).squeeze(0)
y_ = F.sigmoid(self.shared_expert_gate(hidden_states)) * y_
y = self.experts.generate_experts.sync_for_one_decode(cuda_graph_idx).unsqueeze(0)
y += y_
y.resize_(*orig_shape)
return y
y_ = self.shared_expert(hidden_states, bsz_tensor).squeeze(0)
y_ = (
F.sigmoid(self.shared_expert_gate(hidden_states)) * y_
)
if isinstance(self.experts, KExpertsBase):
y = self.moe_on_cpuinfer(hidden_states, selected_experts, routing_weights, bsz_tensor, cuda_graph_idx).view(*orig_shape).to(device=hidden_states.device)
elif hidden_states.size(0) > 10:
# TODO may bugs here
y = (
self.moe_infer(hidden_states, selected_experts, routing_weights)
.view(*orig_shape)
.to(device=hidden_states.device)
)
else:
# TODO may bugs here
y = (
self.moe_infer_simple(hidden_states, selected_experts, routing_weights)
.view(*orig_shape)
.to(device=hidden_states.device)
)
y += y_
return y
@torch.no_grad()
def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor, bsz_tensor, cuda_graph_idx=0) -> torch.Tensor:
outs = torch.empty_like(x)
outs = self.experts(x, topk_ids, topk_weight, bsz_tensor, cuda_graph_idx)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer_simple(
self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor
) -> torch.Tensor:
"""
x: [num_tokens, hidden_size]
topk_ids, topk_weight: [num_tokens, num_selected_experts]
"""
outs = torch.zeros_like(x)
for token_idx in range(topk_ids.size(0)):
for expert_idx in range(topk_ids.size(1)):
expert = self.experts[topk_ids[token_idx, expert_idx]]
outs[token_idx] += (
expert.forward(x[token_idx]) * topk_weight[token_idx, expert_idx]
)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer(self, x, topk_ids, topk_weight):
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert.forward(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
class KQwen3MoeSparseMoeBlockV2(BaseInjectedModule, Qwen3MoeSparseMoeBlock):
def forward(self, hidden_states, bsz_tensor, cuda_graph_idx=0):
orig_shape = hidden_states.shape
sequence_length = orig_shape[1]
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
router_logits = self.gate(hidden_states, bsz_tensor)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
if self.norm_topk_prob:
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
# only for generate phase
if hasattr(self.experts.generate_experts, "submit_for_one_decode") and torch.cuda.is_current_stream_capturing(): # TODO: this branch cause jit bug
self.experts.generate_experts.submit_for_one_decode(hidden_states, selected_experts, routing_weights, bsz_tensor, cuda_graph_idx)
# y_ = self.shared_expert(hidden_states, bsz_tensor).squeeze(0)
# y_ = F.sigmoid(self.shared_expert_gate(hidden_states)) * y_
y = self.experts.generate_experts.sync_for_one_decode(cuda_graph_idx).unsqueeze(0)
# y += y_
y.resize_(*orig_shape)
return y
# y_ = self.shared_expert(hidden_states, bsz_tensor).squeeze(0)
# y_ = (
# F.sigmoid(self.shared_expert_gate(hidden_states)) * y_
# )
if isinstance(self.experts, KExpertsBase):
y = self.moe_on_cpuinfer(hidden_states, selected_experts, routing_weights, bsz_tensor, cuda_graph_idx).view(*orig_shape).to(device=hidden_states.device)
elif hidden_states.size(0) > 10:
# TODO may bugs here
y = (
self.moe_infer(hidden_states, selected_experts, routing_weights)
.view(*orig_shape)
.to(device=hidden_states.device)
)
else:
# TODO may bugs here
y = (
self.moe_infer_simple(hidden_states, selected_experts, routing_weights)
.view(*orig_shape)
.to(device=hidden_states.device)
)
# y += y_
return y
@torch.no_grad()
def moe_on_cpuinfer(self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor, bsz_tensor, cuda_graph_idx=0) -> torch.Tensor:
outs = torch.empty_like(x)
outs = self.experts(x, topk_ids, topk_weight, bsz_tensor, cuda_graph_idx)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer_simple(
self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor
) -> torch.Tensor:
"""
x: [num_tokens, hidden_size]
topk_ids, topk_weight: [num_tokens, num_selected_experts]
"""
outs = torch.zeros_like(x)
for token_idx in range(topk_ids.size(0)):
for expert_idx in range(topk_ids.size(1)):
expert = self.experts[topk_ids[token_idx, expert_idx]]
outs[token_idx] += (
expert.forward(x[token_idx]) * topk_weight[token_idx, expert_idx]
)
return outs
@torch.no_grad()
# TODO may bugs here
def moe_infer(self, x, topk_ids, topk_weight):
cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
cnts.scatter_(1, topk_ids, 1)
tokens_per_expert = cnts.sum(dim=0)
idxs = topk_ids.view(-1).argsort()
sorted_tokens = x[idxs // topk_ids.shape[1]]
tokens_per_expert = tokens_per_expert.cpu().numpy()
outputs = []
start_idx = 0
for i, num_tokens in enumerate(tokens_per_expert):
end_idx = start_idx + num_tokens
if num_tokens == 0:
continue
expert = self.experts[i + self.ep_rank * self.experts_per_rank]
tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
expert_out = expert.forward(tokens_for_this_expert)
outputs.append(expert_out)
start_idx = end_idx
outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
new_x = torch.empty_like(outs)
new_x[idxs] = outs
final_out = (
new_x.view(*topk_ids.shape, -1)
.type(topk_weight.dtype)
.mul_(topk_weight.unsqueeze(dim=-1))
.sum(dim=1)
.type(new_x.dtype)
)
return final_out
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -4,8 +4,7 @@ from ktransformers.util.custom_gguf import GGUFLoader
from transformers import PretrainedConfig
import torch.nn as nn
from ktransformers.models.modeling_deepseek_v3 import DeepseekV3MLP
from ktransformers.models.modeling_qwen2_moe import Qwen2MoeMLP
class kDeepseekV3MLP(DeepseekV3MLP, BaseInjectedModule):
def __init__(self,
key: str,
......@@ -18,6 +17,21 @@ class kDeepseekV3MLP(DeepseekV3MLP, BaseInjectedModule):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.hidden_size, orig_module.intermediate_size)
def forward(self, x, bsz_tensor):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, bsz_tensor)) * self.up_proj(x, bsz_tensor), bsz_tensor)
return down_proj
class KQwen2MoeMLP(Qwen2MoeMLP, BaseInjectedModule):
def __init__(self,
key: str,
gguf_loader : GGUFLoader,
config: PretrainedConfig,
orig_module: nn.Module,
prefill_device: str = "cuda",
generate_device: str = "cuda",
**kwargs):
BaseInjectedModule.__init__(self, key, gguf_loader, config, orig_module, prefill_device, **kwargs)
self.orig_module.__init__(orig_module.config,
orig_module.intermediate_size)
def forward(self, x, bsz_tensor):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, bsz_tensor)) * self.up_proj(x, bsz_tensor), bsz_tensor)
return down_proj
\ No newline at end of file
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment