README.md 20 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
<div align="center">
  <!-- <h1>KTransformers</h1> -->
  <p align="center">
chenxl's avatar
chenxl committed
4
5

<picture>
UnicornChan's avatar
UnicornChan committed
6
    <img alt="KTransformers" src="https://github.com/user-attachments/assets/d5a2492f-a415-4456-af99-4ab102f13f8b" width=50%>
Mingxing Zhang's avatar
Mingxing Zhang committed
7

chenxl's avatar
chenxl committed
8
</picture>
UnicornChan's avatar
UnicornChan committed
9

chenxl's avatar
chenxl committed
10
</p>
chenxl's avatar
chenxl committed
11
  <h3>A Flexible Framework for Experiencing Cutting-edge LLM Inference Optimizations</h3>
Azure's avatar
Azure committed
12
  <strong><a href="#show-cases">🌟 Show Cases</a> | <a href="#quick-start">🚀 Quick Start</a> | <a href="#tutorial">📃 Tutorial</a> | <a href="https://github.com/kvcache-ai/ktransformers/discussions">💬  Discussion </a>|<a href="#FAQ"> 🙋 FAQ</a> </strong>
chenxl's avatar
chenxl committed
13
14
15
16
17
18
19
20
21
22
23
</div>

<h2 id="intro">🎉 Introduction</h2>
KTransformers, pronounced as Quick Transformers, is designed to enhance your 🤗 <a href="https://github.com/huggingface/transformers">Transformers</a> experience with advanced kernel optimizations and placement/parallelism strategies.
<br/><br/>
KTransformers is a flexible, Python-centric framework designed with extensibility at its core. 
By implementing and injecting an optimized module with a single line of code, users gain access to a Transformers-compatible
interface, RESTful APIs compliant with OpenAI and Ollama, and even a simplified ChatGPT-like web UI. 
<br/><br/>
Our vision for KTransformers is to serve as a flexible platform for experimenting with innovative LLM inference optimizations. Please let us know if you need any other features.

chenxl's avatar
chenxl committed
24
<h2 id="Updates">🔥 Updates</h2>
Azure's avatar
Azure committed
25

26
27
* **Feb 10, 2025**: Support Deepseek-R1 and V3 on single (24GB VRAM)/multi gpu and 382G DRAM, up to 3~28x speedup. The detailed tutorial is [here](./doc/en/DeepseekR1_V3_tutorial.md).
* **Aug 28, 2024**: Support 1M context under the InternLM2.5-7B-Chat-1M model, utilizing 24GB of VRAM and 150GB of DRAM. The detailed tutorial is [here](./doc/en/long_context_tutorial.md).
TangJingqi's avatar
TangJingqi committed
28
* **Aug 28, 2024**: Decrease DeepseekV2's required VRAM from 21G to 11G.
29
* **Aug 15, 2024**: Update detailed [TUTORIAL](doc/en/injection_tutorial.md) for injection and multi-GPU. 
chenxl's avatar
chenxl committed
30
* **Aug 14, 2024**: Support llamfile as linear backend. 
Azure's avatar
Azure committed
31
32
* **Aug 12, 2024**: Support multiple GPU; Support new model: mixtral 8\*7B  and 8\*22B; Support q2k, q3k, q5k dequant on gpu.
* **Aug 9, 2024**: Support windows native.
33

liam's avatar
liam committed
34
<h2 id="show-cases">🌟 Show Cases</h2>
UnicornChan's avatar
UnicornChan committed
35

liam's avatar
liam committed
36
37
38
<div>
<h3>GPT-4/o1-level Local VSCode Copilot on a Desktop with only 24GB VRAM</h3>
</div>
chenxl's avatar
chenxl committed
39

liam's avatar
liam committed
40
https://github.com/user-attachments/assets/ebd70bfa-b2c1-4abb-ae3b-296ed38aa285
chenxl's avatar
chenxl committed
41
42
43

</p>

Azure's avatar
Azure committed
44
- **[NEW!!!] Local 671B DeepSeek-Coder-V3/R1:** Running its Q4_K_M version using only 14GB VRAM and 382GB DRAM([Tutorial](./doc/en/DeepseekR1_V3_tutorial.md)).
liam's avatar
liam committed
45
	- Prefill Speed (tokens/s): 
cuichengyi's avatar
cuichengyi committed
46
 		- KTransformers: 54.21 (32 cores) → 74.362 (dual-socket, 2×32 cores) → 255.26 (optimized AMX-based MoE kernel, V0.3 only) → 286.55 (selectively using 6 experts, V0.3 only)  
liam's avatar
liam committed
47
 		- Compared to 10.31 tokens/s in llama.cpp with 2×32 cores, achieving up to **27.79× speedup**.  
liam's avatar
liam committed
48
 	- Decode Speed (tokens/s):  
cuichengyi's avatar
cuichengyi committed
49
 		- KTransformers: 8.73 (32 cores) → 11.26 (dual-socket, 2×32 cores) → 13.69 (selectively using 6 experts, V0.3 only)  
liam's avatar
liam committed
50
51
 		- Compared to 4.51 tokens/s in llama.cpp with 2×32 cores, achieving up to **3.03× speedup**.  
	- Upcoming Open Source Release:
liam's avatar
liam committed
52
		- AMX optimizations and selective expert activation will be open-sourced in V0.3.  
liam's avatar
liam committed
53
		- Currently available only in preview binary distribution, which can be downloaded [here](./doc/en/DeepseekR1_V3_tutorial.md).  
liam's avatar
liam committed
54
55
56

- **Local 236B DeepSeek-Coder-V2:** Running its Q4_K_M version using only 21GB VRAM and 136GB DRAM, attainable on a local desktop machine, which scores even better than GPT4-0613 in [BigCodeBench](https://huggingface.co/blog/leaderboard-bigcodebench).

chenxl's avatar
chenxl committed
57
58
<p align="center">
  <picture>
liam's avatar
liam committed
59
    <img alt="DeepSeek-Coder-V2 Score" src="https://github.com/user-attachments/assets/d052924e-8631-44de-aad2-97c54b965693" width=100%>
chenxl's avatar
chenxl committed
60
61
62
  </picture>
</p>

liam's avatar
liam committed
63
64
- **Faster Speed:** Achieving 126 tokens/s for 2K prompt prefill and 13.6 tokens/s for generation through MoE offloading and injecting advanced kernels from [Llamafile](https://github.com/Mozilla-Ocho/llamafile/tree/main) and [Marlin](https://github.com/IST-DASLab/marlin).
- **VSCode Integration:** Wrapped into an OpenAI and Ollama compatible API for seamless integration as a backend for [Tabby](https://github.com/TabbyML/tabby) and various other frontends.
chenxl's avatar
chenxl committed
65

liam's avatar
liam committed
66
<p align="center">
chenxl's avatar
chenxl committed
67

liam's avatar
liam committed
68
https://github.com/user-attachments/assets/4c6a8a38-05aa-497d-8eb1-3a5b3918429c
UnicornChan's avatar
UnicornChan committed
69

chenxl's avatar
chenxl committed
70
71
</p>

72
<h3>1M Context Local Inference on a Desktop with Only 24GB VRAM</h3>
liam's avatar
liam committed
73
74
75
76
77
<p align="center">

https://github.com/user-attachments/assets/a865e5e4-bca3-401e-94b8-af3c080e6c12

* **1M Context InternLM 2.5 7B**: Operates at full bf16 precision, utilizing 24GB VRAM and 150GB DRAM, which is feasible on a local desktop setup. It achieves a 92.88% success rate on the 1M "Needle In a Haystack" test and 100% on the 128K NIAH test.
chenxl's avatar
chenxl committed
78
79
80

<p align="center">
  <picture>
liam's avatar
liam committed
81
    <img alt="Single Needle Retrieval 128K" src="./doc/assets/needle_128K.png" width=100%>
chenxl's avatar
chenxl committed
82
83
84
85
  </picture>
</p>

<p align="center">
liam's avatar
liam committed
86
87
88
89
90
91
92
93
  <picture>
    <img alt="Single Needle Retrieval 1000K" src="./doc/assets/needle_1M.png" width=100%>
  </picture>
</p>

* **Enhanced Speed**: Reaches 16.91 tokens/s for generation with a 1M context using sparse attention, powered by llamafile kernels. This method is over 10 times faster than full attention approach of llama.cpp.

* **Flexible Sparse Attention Framework**: Offers a flexible block sparse attention framework for CPU offloaded decoding. Compatible with SnapKV, Quest, and InfLLm. Further information is available [here](./doc/en/long_context_introduction.md).
94

UnicornChan's avatar
UnicornChan committed
95

chenxl's avatar
chenxl committed
96
97
98
99
100

<strong>More advanced features will coming soon, so stay tuned!</strong>

<h2 id="quick-start">🚀 Quick Start</h2>

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
<h3>Preparation</h3>
Some preparation:

- CUDA 12.1 and above, if you didn't have it yet, you may install from [here](https://developer.nvidia.com/cuda-downloads).
  
  ```sh
  # Adding CUDA to PATH
  export PATH=/usr/local/cuda/bin:$PATH
  export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
  export CUDA_PATH=/usr/local/cuda
  ```

- Linux-x86_64 with gcc, g++ and cmake
  
  ```sh
  sudo apt-get update
  sudo apt-get install gcc g++ cmake ninja-build
  ```

- We recommend using [Conda](https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh) to create a virtual environment with Python=3.11 to run our program.
  
  ```sh
  conda create --name ktransformers python=3.11
  conda activate ktransformers # you may need to run ‘conda init’ and reopen shell first
  ```

- Make sure that PyTorch, packaging, ninja is installed
  
  ```
  pip install torch packaging ninja cpufeature numpy
  ```

<h3>Installation</h3>

1. Use a Docker image, see [documentation for Docker](./doc/en/Docker.md) 

2. You can install using Pypi (for linux):
   
   ```
   pip install ktransformers --no-build-isolation
   ```
   
   for windows we prepare a pre compiled whl package on [ktransformers-0.2.0+cu125torch24avx2-cp312-cp312-win_amd64.whl](https://github.com/kvcache-ai/ktransformers/releases/download/v0.2.0/ktransformers-0.2.0+cu125torch24avx2-cp312-cp312-win_amd64.whl), which require cuda-12.5, torch-2.4, python-3.11, more pre compiled package are being produced. 

3. Or you can download source code and compile:
   
   - init source code 
     
     ```sh
     git clone https://github.com/kvcache-ai/ktransformers.git
     cd ktransformers
     git submodule init
     git submodule update
     ```

   - [Optional] If you want to run with website, please [compile the website](./doc/en/api/server/website.md) before execute ```bash install.sh```

   - Compile and install (for Linux)
     
     ```
     bash install.sh
     ```

   - Compile and install(for Windows)
     
     ```
     install.bat
     ```
4. If you are developer, you can make use of the makefile to compile and format the code. <br> the detailed usage of makefile is [here](./doc/en/makefile_usage.md) 
<h3>Local Chat</h3>
We provide a simple command-line local chat Python script that you can run for testing.

> Note that this is a very simple test tool only support one round chat without any memory about last input, if you want to try full ability of the model, you may go to [RESTful API and Web UI](#id_666). We use the DeepSeek-V2-Lite-Chat-GGUF model as an example here. But we also support other models, you can replace it with any other model that you want to test. 

<h4>Run Example</h4>

```shell
# Begin from root of your cloned repo!
# Begin from root of your cloned repo!!
# Begin from root of your cloned repo!!! 

# Download mzwing/DeepSeek-V2-Lite-Chat-GGUF from huggingface
mkdir DeepSeek-V2-Lite-Chat-GGUF
cd DeepSeek-V2-Lite-Chat-GGUF

wget https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/resolve/main/DeepSeek-V2-Lite-Chat.Q4_K_M.gguf -O DeepSeek-V2-Lite-Chat.Q4_K_M.gguf

cd .. # Move to repo's root dir

# Start local chat
python -m ktransformers.local_chat --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF

# If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:
# GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite
# python  ktransformers.local_chat --model_path ./DeepSeek-V2-Lite --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF
```

It features the following arguments:

- `--model_path` (required): Name of the model (such as "deepseek-ai/DeepSeek-V2-Lite-Chat" which will automatically download configs from [Hugging Face](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite)). Or if you already got local files  you may directly use that path to initialize the model.  
  
  > Note: <strong>.safetensors</strong> files are not required in the directory. We only need config files to build model and tokenizer.

- `--gguf_path` (required): Path of a directory containing GGUF files which could that can be downloaded from [Hugging Face](https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/tree/main). Note that the directory should only contains GGUF of current model, which means you need one separate directory for each model.

- `--optimize_rule_path` (required except for Qwen2Moe and DeepSeek-V2): Path of YAML file containing optimize rules. There are two rule files pre-written in the [ktransformers/optimize/optimize_rules](ktransformers/optimize/optimize_rules) directory for optimizing DeepSeek-V2 and Qwen2-57B-A14, two SOTA MoE models.

- `--max_new_tokens`: Int (default=1000). Maximum number of new tokens to generate.

- `--cpu_infer`: Int (default=10). The number of CPUs used for inference. Should ideally be set to the (total number of cores - 2).

<h3 id="suggested-model"> Suggested Model</h3>

| Model Name                     | Model Size | VRAM  | Minimum DRAM    | Recommended DRAM  |
| ------------------------------ | ---------- | ----- | --------------- | ----------------- |
| DeepSeek-R1-q4_k_m		 | 377G       | 14G   | 382G            | 512G		    |
| DeepSeek-V3-q4_k_m		 | 377G       | 14G   | 382G            | 512G		    |
| DeepSeek-V2-q4_k_m             | 133G       | 11G   | 136G            | 192G              |
| DeepSeek-V2.5-q4_k_m           | 133G       | 11G   | 136G            | 192G              |
| DeepSeek-V2.5-IQ4_XS           | 117G       | 10G   | 107G            | 128G              |
| Qwen2-57B-A14B-Instruct-q4_k_m | 33G        | 8G    | 34G             | 64G               |
| DeepSeek-V2-Lite-q4_k_m        | 9.7G       | 3G    | 13G             | 16G               |
| Mixtral-8x7B-q4_k_m            | 25G        | 1.6G  | 51G             | 64G               |
| Mixtral-8x22B-q4_k_m           | 80G        | 4G    | 86.1G           | 96G               |
| InternLM2.5-7B-Chat-1M         | 15.5G      | 15.5G | 8G(32K context) | 150G (1M context) |


More will come soon. Please let us know which models you are most interested in. 

Be aware that you need to be subject to their corresponding model licenses when using [DeepSeek](https://huggingface.co/deepseek-ai/DeepSeek-V2/blob/main/LICENSE) and [QWen](https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE).

<details>
  <summary>Click To Show how to run other examples</summary>
chenxl's avatar
chenxl committed
234

235
* Qwen2-57B
chenxl's avatar
chenxl committed
236

237
238
  ```sh
  pip install flash_attn # For Qwen2
chenxl's avatar
chenxl committed
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
  mkdir Qwen2-57B-GGUF && cd Qwen2-57B-GGUF

  wget https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct-GGUF/resolve/main/qwen2-57b-a14b-instruct-q4_k_m.gguf?download=true -O qwen2-57b-a14b-instruct-q4_k_m.gguf

  cd ..

  python -m ktransformers.local_chat --model_name Qwen/Qwen2-57B-A14B-Instruct --gguf_path ./Qwen2-57B-GGUF

  # If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:
  # GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct
  # python  ktransformers/local_chat.py --model_path ./Qwen2-57B-A14B-Instruct --gguf_path ./DeepSeek-V2-Lite-Chat-GGUF
  ```

* DeepseekV2
  
  ```sh
  mkdir DeepSeek-V2-Chat-0628-GGUF && cd DeepSeek-V2-Chat-0628-GGUF
  # Download weights
  wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00001-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00001-of-00004.gguf
  wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00002-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00002-of-00004.gguf
  wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00003-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00003-of-00004.gguf
  wget https://huggingface.co/bartowski/DeepSeek-V2-Chat-0628-GGUF/resolve/main/DeepSeek-V2-Chat-0628-Q4_K_M/DeepSeek-V2-Chat-0628-Q4_K_M-00004-of-00004.gguf -o DeepSeek-V2-Chat-0628-Q4_K_M-00004-of-00004.gguf

  cd ..

  python -m ktransformers.local_chat --model_name deepseek-ai/DeepSeek-V2-Chat-0628 --gguf_path ./DeepSeek-V2-Chat-0628-GGUF

  # If you see “OSError: We couldn't connect to 'https://huggingface.co' to load this file”, try:

  # GIT_LFS_SKIP_SMUDGE=1 git clone https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat-0628

  # python -m ktransformers.local_chat --model_path ./DeepSeek-V2-Chat-0628 --gguf_path ./DeepSeek-V2-Chat-0628-GGUF
  ```

| model name | weights download link |
|----------|----------|
| Qwen2-57B | [Qwen2-57B-A14B-gguf-Q4K-M](https://huggingface.co/Qwen/Qwen2-57B-A14B-Instruct-GGUF/tree/main) |
| DeepseekV2-coder |[DeepSeek-Coder-V2-Instruct-gguf-Q4K-M](https://huggingface.co/LoneStriker/DeepSeek-Coder-V2-Instruct-GGUF/tree/main) |
| DeepseekV2-chat |[DeepSeek-V2-Chat-gguf-Q4K-M](https://huggingface.co/bullerwins/DeepSeek-V2-Chat-0628-GGUF/tree/main) |
| DeepseekV2-lite | [DeepSeek-V2-Lite-Chat-GGUF-Q4K-M](https://huggingface.co/mzwing/DeepSeek-V2-Lite-Chat-GGUF/tree/main) |

</details>

<!-- pin block for jump -->
<span id='id_666'> 

<h3>RESTful API and Web UI</h3>


Start without website:

```sh
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF --port 10002
```

Start with website:

```sh
ktransformers --model_path deepseek-ai/DeepSeek-V2-Lite-Chat --gguf_path /path/to/DeepSeek-V2-Lite-Chat-GGUF  --port 10002 --web True
```

Or you want to start server with transformers, the model_path should include safetensors

```bash
ktransformers --type transformers --model_path /mnt/data/model/Qwen2-0.5B-Instruct --port 10002 --web True
```

Access website with url [http://localhost:10002/web/index.html#/chat](http://localhost:10002/web/index.html#/chat) :

<p align="center">
  <picture>
    <img alt="Web UI" src="https://github.com/user-attachments/assets/615dca9b-a08c-4183-bbd3-ad1362680faf" width=90%>
  </picture>
</p>
chenxl's avatar
chenxl committed
314

315
More information about the RESTful API server can be found [here](doc/en/api/server/server.md). You can also find an example of integrating with Tabby [here](doc/en/api/server/tabby.md).
chenxl's avatar
chenxl committed
316
317
318

<h2 id="tutorial">📃 Brief Injection Tutorial</h2>
At the heart of KTransformers is a user-friendly, template-based injection framework. 
chenxl's avatar
chenxl committed
319
This allows researchers to easily replace original torch modules with optimized variants. It also simplifies the process of combining multiple optimizations, allowing the exploration of their synergistic effects.
chenxl's avatar
chenxl committed
320
321
322
323

</br>
<p align="center">
  <picture>
UnicornChan's avatar
UnicornChan committed
324
    <img alt="Inject-Struction" src="https://github.com/user-attachments/assets/6b4c1e54-9f6d-45c5-a3fc-8fa45e7d257e" width=65%>
chenxl's avatar
chenxl committed
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
  </picture>
</p>

Given that vLLM already serves as a great framework for large-scale deployment optimizations, KTransformers is particularly focused on local deployments that are constrained by limited resources. We pay special attention to heterogeneous computing opportunities, such as GPU/CPU offloading of quantized models. For example, we support the efficient <a herf="https://github.com/Mozilla-Ocho/llamafile/tree/main">Llamafile</a> and <a herf="https://github.com/IST-DASLab/marlin">Marlin</a> kernels for CPU and GPU, respectively. More details can be found <a herf="doc/en/operators/llamafile.md">here</a>.

<h3>Example Usage</h3>
To utilize the provided kernels, users only need to create a YAML-based injection template and add the call to `optimize_and_load_gguf` before using the Transformers model.

```python
with torch.device("meta"):
    model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
optimize_and_load_gguf(model, optimize_rule_path, gguf_path, config)
...
generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens=1000)
```

In this example, the AutoModel is first initialized on the meta device to avoid occupying any memory resources. Then, `optimize_and_load_gguf` iterates through all sub-modules of the model, matches rules specified in your YAML rule file, and replaces them with advanced modules as specified.

After injection, the original `generate` interface is available, but we also provide a compatible `prefill_and_generate` method, which enables further optimizations like CUDAGraph to improve generation speed.

345
346
347
348
<h3>How to custom your model</h3>

A detailed tutorial of the injection and multi-GPU using DeepSeek-V2 as an example is given [here](doc/en/injection_tutorial.md).

chenxl's avatar
chenxl committed
349
350
351
352
353
354
355
Below is an example of a YAML template for replacing all original Linear modules with Marlin, an advanced 4-bit quantization kernel.

```yaml
- match:
    name: "^model\\.layers\\..*$"  # regular expression 
    class: torch.nn.Linear  # only match modules matching name and class simultaneously
  replace:
356
    class: ktransformers.operators.linear.KTransformerLinear  # optimized Kernel on quantized data types
chenxl's avatar
chenxl committed
357
358
359
    device: "cpu"   # which devices to load this module when initializing
    kwargs:
      generate_device: "cuda"
360
      generate_linear_type: "QuantizedLinearMarlin"
chenxl's avatar
chenxl committed
361
362
363
364
365
366
```

Each rule in the YAML file has two parts: `match` and `replace`. The `match` part specifies which module should be replaced, and the `replace` part specifies the module to be injected into the model along with the initialization keywords.

You can find example rule templates for optimizing DeepSeek-V2 and Qwen2-57B-A14, two SOTA MoE models, in the [ktransformers/optimize/optimize_rules](ktransformers/optimize/optimize_rules) directory. These templates are used to power the `local_chat.py` demo.

367
If you are interested in our design principles and the implementation of the injection framework, please refer to the [design document](doc/en/deepseek-v2-injection.md).
chenxl's avatar
chenxl committed
368
369
370
371
372
373

<h2 id="ack">Acknowledgment and Contributors</h2>

The development of KTransformer is based on the flexible and versatile framework provided by Transformers. We also benefit from advanced kernels such as GGUF/GGML, Llamafile, and Marlin. We are planning to contribute back to the community by upstreaming our modifications.

KTransformer is actively maintained and developed by contributors from the <a href="https://madsys.cs.tsinghua.edu.cn/">MADSys group</a> at Tsinghua University and members from <a href="http://approaching.ai/">Approaching.AI</a>. We welcome new contributors to join us in making KTransformer faster and easier to use.
Atream's avatar
Atream committed
374
375
376
377


<h2 id="ack">Discussion</h2>

ZiWei Yuan's avatar
ZiWei Yuan committed
378
If you have any questions, feel free to open an issue. Alternatively, you can join our WeChat group for further discussion. QR Code: [WeChat Group](WeChatGroup.png)
Azure's avatar
Azure committed
379
380
381

<h2 id="FAQ">🙋 FAQ</h2>

feeeei's avatar
feeeei committed
382
Some common questions are answered in the [FAQ](doc/en/FAQ.md).