ktransformers.py 3.88 KB
Newer Older
chenxl's avatar
chenxl committed
1
2
3
4
5
6
7
8
import torch
from transformers import AutoTokenizer, AutoConfig, GenerationConfig
from ktransformers.server.backend.interfaces.transformers import TransformersInterface,ConfigArgs, TransformersThreadContext,default_args,TextStreamer
from ktransformers.server.config.log import logger
from ktransformers.optimize.optimize import optimize_and_load_gguf
from ktransformers.models.custom_cache import StaticCache
from ktransformers.util.cuda_graph_runner import CUDAGraphRunner
from ktransformers.local_chat import custom_models, default_optimize_rules
9
from ktransformers.util.utils import get_device
chenxl's avatar
chenxl committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51


class KTransformersThreadContext(TransformersThreadContext):
    pass


class KTransformersInterface(TransformersInterface):
    def __init__(self,args:ConfigArgs= default_args):
        self.args = args
        torch.set_default_dtype(torch.bfloat16)
        torch.set_grad_enabled(False)
        self.tokenizer = AutoTokenizer.from_pretrained(args.model_dir,device = args.device)
        config=AutoConfig.from_pretrained(args.model_dir, trust_remote_code=True)
        if config.architectures[0] == "Qwen2MoeForCausalLM":
            config._attn_implementation="flash_attention_2"

        with torch.device("meta"):
            self.model=custom_models[config.architectures[0]](config)

        optimize_rule_path = default_optimize_rules[config.architectures[0]]
                
        # print(optimize_config)

        gguf_path = args.gguf_path
        if gguf_path is None:
            gguf_path = input(
            "please input the path of your gguf file(gguf file in the dir containing input gguf file must all belong to current model):"
            )
        optimize_and_load_gguf(self.model, optimize_rule_path, gguf_path, config)

        
    
        logger.info(f'{args.model_name} loaded from {args.model_dir} to {args.device}')
        self.cache = StaticCache(config=self.model.config, max_batch_size=args.batch_size, max_cache_len=args.cache_lens, device=args.device, dtype=self.model.dtype)
        logger.info(f'StaticCache (length={args.cache_lens}) created at {args.device}, batch size:{args.batch_size}')
        self.model.generation_config = GenerationConfig.from_pretrained(args.model_dir)
        if self.model.generation_config.pad_token_id is None:
            self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
        self.streamer = TextStreamer(self.tokenizer)
    
    def decode_one_tokens(self):
        if not hasattr(self, "cuda_graph_runner"):
52
53
54
            device_map = self.model.gguf_loader.tensor_device_map
            torch_device = get_device('blk.0.self_attn', device_map)
            torch_device = "cuda:0" if torch_device == "cuda" else torch_device
chenxl's avatar
chenxl committed
55
            self.cuda_graph_runner = CUDAGraphRunner()
56
            self.cuda_graph_runner.capture(self.model, self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position, self.cache, main_device=torch_device, return_dict=False, use_cache=True)
chenxl's avatar
chenxl committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        
        if hasattr(self, "cuda_graph_runner"):
            logits = self.cuda_graph_runner(self.current_ids, self.active_cache_position.unsqueeze(0), self.active_cache_position)
            self.cache.change_seq_length(1)
            torch.cuda.synchronize()
            logits = logits[0,-1,:]
            return self.logits_to_token(logits)
        
        if self.use_static_cache:
            mask = torch.ones((1,self.seq_length)).to(self.args.device)
            logits = self.model(
                self.current_ids,
                cache_position=self.active_cache_position,
                past_key_values=self.cache,
                attention_mask=mask,
                return_dict=False,
                use_cache=True
            )[0]
        else:
            logits = self.model(
                self.current_ids,
                return_dict=False
            )[0]
        logits = logits[0,-1,:]

        return self.logits_to_token(logits)