"launcher/vscode:/vscode.git/clone" did not exist on "e9669a4085a0f031df10585090fe656d4675d492"
save-load-state.cpp 8.36 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
#include "common.h"
#include "llama.h"

#include <vector>
#include <cstdio>
#include <chrono>

int main(int argc, char ** argv) {
    gpt_params params;

    params.prompt = "The quick brown fox";

    if (!gpt_params_parse(argc, argv, params)) {
xuxzh1's avatar
init  
xuxzh1 committed
14
        gpt_params_print_usage(argc, argv, params);
mashun1's avatar
v1  
mashun1 committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
        return 1;
    }

    print_build_info();

    if (params.n_predict < 0) {
        params.n_predict = 16;
    }

    auto n_past = 0;

    std::string result0;
    std::string result1;
    std::string result2;

    // init
xuxzh1's avatar
init  
xuxzh1 committed
31
32
33
34
    llama_init_result llama_init = llama_init_from_gpt_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;
mashun1's avatar
v1  
mashun1 committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

    if (model == nullptr || ctx == nullptr) {
        fprintf(stderr, "%s : failed to init\n", __func__);
        return 1;
    }

    // tokenize prompt
    auto tokens = llama_tokenize(ctx, params.prompt, true);

    // evaluate prompt
    llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size(), n_past, 0));
    n_past += tokens.size();

    // save state (rng, logits, embedding and kv_cache) to file
    {
        std::vector<uint8_t> state_mem(llama_state_get_size(ctx));
xuxzh1's avatar
init  
xuxzh1 committed
51
        const size_t written = llama_state_get_data(ctx, state_mem.data(), state_mem.size());
mashun1's avatar
v1  
mashun1 committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        FILE *fp_write = fopen("dump_state.bin", "wb");
        fwrite(state_mem.data(), 1, written, fp_write);
        fclose(fp_write);

        fprintf(stderr, "%s : serialized state into %zd out of a maximum of %zd bytes\n", __func__, written, state_mem.size());
    }

    // save state (last tokens)
    const auto n_past_saved = n_past;

    // first run
    printf("\nfirst run: %s", params.prompt.c_str());

    for (auto i = 0; i < params.n_predict; i++) {
        auto * logits = llama_get_logits(ctx);
        auto n_vocab = llama_n_vocab(model);

        std::vector<llama_token_data> candidates;
        candidates.reserve(n_vocab);
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
        }
        llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
        auto next_token = llama_sample_token(ctx, &candidates_p);
        auto next_token_str = llama_token_to_piece(ctx, next_token);

        printf("%s", next_token_str.c_str());
        result0 += next_token_str;

        if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
            llama_free(ctx);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n\n");

    // free old context
    llama_free(ctx);

    // make new context
    auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));

    printf("\nsecond run: %s", params.prompt.c_str());

    // load state (rng, logits, embedding and kv_cache) from file
    {
xuxzh1's avatar
init  
xuxzh1 committed
103
        std::vector<uint8_t> state_mem;
mashun1's avatar
v1  
mashun1 committed
104
105

        FILE * fp_read = fopen("dump_state.bin", "rb");
xuxzh1's avatar
init  
xuxzh1 committed
106
107
108
        fseek(fp_read, 0, SEEK_END);
        state_mem.resize(ftell(fp_read));
        fseek(fp_read, 0, SEEK_SET);
mashun1's avatar
v1  
mashun1 committed
109
110
111
        const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
        fclose(fp_read);

xuxzh1's avatar
init  
xuxzh1 committed
112
        if (read != llama_state_set_data(ctx2, state_mem.data(), state_mem.size())) {
mashun1's avatar
v1  
mashun1 committed
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            fprintf(stderr, "\n%s : failed to read state\n", __func__);
            llama_free(ctx2);
            llama_free_model(model);
            return 1;
        }

        fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
    }

    // restore state (last tokens)
    n_past = n_past_saved;

    // second run
    for (auto i = 0; i < params.n_predict; i++) {
        auto * logits = llama_get_logits(ctx2);
        auto n_vocab = llama_n_vocab(model);
        std::vector<llama_token_data> candidates;
        candidates.reserve(n_vocab);
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
        }
        llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
        auto next_token = llama_sample_token(ctx2, &candidates_p);
        auto next_token_str = llama_token_to_piece(ctx2, next_token);

        printf("%s", next_token_str.c_str());
        result1 += next_token_str;

        if (llama_decode(ctx2, llama_batch_get_one(&next_token, 1, n_past, 0))) {
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
            llama_free(ctx2);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n\n");

    llama_free(ctx2);

    if (result0 != result1) {
        fprintf(stderr, "\n%s : error : the 2 generations are different\n", __func__);
        return 1;
    }

    // make new context
    auto* ctx3 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));

    printf("\nsingle seq run: %s", params.prompt.c_str());

    // load state (rng, logits, embedding and kv_cache) from file
    {
xuxzh1's avatar
init  
xuxzh1 committed
166
        std::vector<uint8_t> state_mem;
mashun1's avatar
v1  
mashun1 committed
167
168

        FILE * fp_read = fopen("dump_state.bin", "rb");
xuxzh1's avatar
init  
xuxzh1 committed
169
170
171
        fseek(fp_read, 0, SEEK_END);
        state_mem.resize(ftell(fp_read));
        fseek(fp_read, 0, SEEK_SET);
mashun1's avatar
v1  
mashun1 committed
172
173
174
        const size_t read = fread(state_mem.data(), 1, state_mem.size(), fp_read);
        fclose(fp_read);

xuxzh1's avatar
init  
xuxzh1 committed
175
        if (read != llama_state_set_data(ctx3, state_mem.data(), state_mem.size())) {
mashun1's avatar
v1  
mashun1 committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
            fprintf(stderr, "\n%s : failed to read state\n", __func__);
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }

        fprintf(stderr, "%s : deserialized state from %zd out of a maximum of %zd bytes\n", __func__, read, state_mem.size());
    }

    // restore state (last tokens)
    n_past = n_past_saved;

    // save seq 0 and load into seq 1
    {
        // save kv of seq 0
        std::vector<uint8_t> seq_store(llama_state_seq_get_size(ctx3, 0));
xuxzh1's avatar
init  
xuxzh1 committed
192
        const size_t ncopy = llama_state_seq_get_data(ctx3, seq_store.data(), seq_store.size(), 0);
mashun1's avatar
v1  
mashun1 committed
193
194
195
196
197
198
199
200
201
202
203
204
205
        if (ncopy != seq_store.size()) {
            fprintf(stderr, "\n%s : seq copy data length %zd does not match expected length %zd\n", __func__, ncopy, seq_store.size());
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);

        // erase whole kv
        llama_kv_cache_clear(ctx3);
        fprintf(stderr, "%s : kv cache cleared\n", __func__);

        // restore kv into seq 1
xuxzh1's avatar
init  
xuxzh1 committed
206
        const size_t nset = llama_state_seq_set_data(ctx3, seq_store.data(), seq_store.size(), 1);
mashun1's avatar
v1  
mashun1 committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        if (nset != seq_store.size()) {
            fprintf(stderr, "\n%s : seq set data length %zd does not match expected length %zd\n", __func__, nset, seq_store.size());
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        fprintf(stderr, "%s : seq 1 restored, %zd bytes\n", __func__, nset);
    }

    // third run with seq 1 instead of 0
    for (auto i = 0; i < params.n_predict; i++) {
        auto * logits = llama_get_logits(ctx3);
        auto n_vocab = llama_n_vocab(model);
        std::vector<llama_token_data> candidates;
        candidates.reserve(n_vocab);
        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
        }
        llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
        auto next_token = llama_sample_token(ctx3, &candidates_p);
        auto next_token_str = llama_token_to_piece(ctx3, next_token);

        printf("%s", next_token_str.c_str());
        result2 += next_token_str;

        if (llama_decode(ctx3, llama_batch_get_one(&next_token, 1, n_past, 1))) {
            fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
            llama_free(ctx3);
            llama_free_model(model);
            return 1;
        }
        n_past += 1;
    }

    printf("\n");

    llama_free(ctx3);
    llama_free_model(model);

    if (result0 != result2) {
        fprintf(stderr, "\n%s : error : the seq restore generation is different\n", __func__);
        return 1;
    }

    fprintf(stderr, "\n%s : success\n", __func__);

    return 0;
}