"vscode:/vscode.git/clone" did not exist on "e07d0647299d8bc97f665498b608e635d4abf9f7"
retrieval.cpp 10.1 KB
Newer Older
mashun1's avatar
v1  
mashun1 committed
1
2
3
4
5
6
#include "common.h"
#include "llama.h"

#include <algorithm>
#include <fstream>

xuxzh1's avatar
init  
xuxzh1 committed
7
8
static void print_usage(int argc, char ** argv, const gpt_params & params) {
    gpt_params_print_usage(argc, argv, params);
mashun1's avatar
v1  
mashun1 committed
9

xuxzh1's avatar
init  
xuxzh1 committed
10
11
12
    LOG_TEE("\nexample usage:\n");
    LOG_TEE("\n    %s --model ./models/bge-base-en-v1.5-f16.gguf --top-k 3 --context-file README.md --context-file License --chunk-size 100 --chunk-separator .\n", argv[0]);
    LOG_TEE("\n");
mashun1's avatar
v1  
mashun1 committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
}

struct chunk {
    // filename
    std::string filename;
    // original file position
    size_t filepos;
    // original text data
    std::string textdata = "";
    // tokenized text data
    std::vector<llama_token> tokens;
    // embedding
    std::vector<float> embedding;
};

// chunk file data to chunks of size >= chunk_size
// chunk_separator is the separator between chunks
static std::vector<chunk> chunk_file(const std::string & filename, int chunk_size, const std::string & chunk_separator) {
    std::vector<chunk> chunks;
    std::ifstream f(filename.c_str());

    if (!f.is_open()) {
        fprintf(stderr, "Error: could not open file %s\n", filename.c_str());
        return chunks;
    }

    chunk current_chunk;
    char buffer[1024];
    int64_t filepos = 0;
    std::string current = "";
    while (f.read(buffer, 1024)) {
        current += std::string(buffer, f.gcount());
        size_t pos;
        while ((pos = current.find(chunk_separator)) != std::string::npos) {
            current_chunk.textdata += current.substr(0, pos + chunk_separator.size());
            if ((int) current_chunk.textdata.size() > chunk_size) {
                // save chunk
                current_chunk.filepos = filepos;
                current_chunk.filename = filename;
                chunks.push_back(current_chunk);
                // update filepos
                filepos += (int) current_chunk.textdata.size();
                // reset current_chunk
                current_chunk = chunk();
            }
            current = current.substr(pos + chunk_separator.size());
        }

    }
    // add leftover data to last chunk
    if (current_chunk.textdata.size() > 0) {
        if (chunks.empty()) {
            current_chunk.filepos = filepos;
            current_chunk.filename = filename;
            chunks.push_back(current_chunk);
        } else {
            chunks.back().textdata += current_chunk.textdata;
        }
    }
    f.close();
    return chunks;
}

xuxzh1's avatar
init  
xuxzh1 committed
76
77
78
79
static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & tokens, llama_seq_id seq_id) {
    size_t n_tokens = tokens.size();
    for (size_t i = 0; i < n_tokens; i++) {
        llama_batch_add(batch, tokens[i], i, { seq_id }, true);
mashun1's avatar
v1  
mashun1 committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    }
}

static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
    // clear previous kv_cache values (irrelevant for embeddings)
    llama_kv_cache_clear(ctx);

    // run model
    fprintf(stderr, "%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);
    if (llama_decode(ctx, batch) < 0) {
        fprintf(stderr, "%s : failed to decode\n", __func__);
    }

    for (int i = 0; i < batch.n_tokens; i++) {
        if (!batch.logits[i]) {
            continue;
        }

        // try to get sequence embeddings - supported only when pooling_type is not NONE
        const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
        if (embd == NULL) {
            embd = llama_get_embeddings_ith(ctx, i);
            if (embd == NULL) {
                fprintf(stderr, "%s: failed to get embeddings for token %d\n", __func__, i);
                continue;
            }
        }

        float * out = output + batch.seq_id[i][0] * n_embd;
        llama_embd_normalize(embd, out, n_embd);
    }
}

int main(int argc, char ** argv) {
    gpt_params params;

xuxzh1's avatar
init  
xuxzh1 committed
116
117
118
119
    if (!gpt_params_parse(argc, argv, params)) {
        print_usage(argc, argv, params);
        return 1;
    }
mashun1's avatar
v1  
mashun1 committed
120
121
122

    // For BERT models, batch size must be equal to ubatch size
    params.n_ubatch = params.n_batch;
xuxzh1's avatar
init  
xuxzh1 committed
123
    params.embedding = true;
mashun1's avatar
v1  
mashun1 committed
124

xuxzh1's avatar
init  
xuxzh1 committed
125
    if (params.chunk_size <= 0) {
mashun1's avatar
v1  
mashun1 committed
126
127
128
        fprintf(stderr, "chunk_size must be positive\n");
        return 1;
    }
xuxzh1's avatar
init  
xuxzh1 committed
129
    if (params.context_files.empty()) {
mashun1's avatar
v1  
mashun1 committed
130
131
132
133
134
135
136
        fprintf(stderr, "context_files must be specified\n");
        return 1;
    }

    print_build_info();

    printf("processing files:\n");
xuxzh1's avatar
init  
xuxzh1 committed
137
    for (auto & context_file : params.context_files) {
mashun1's avatar
v1  
mashun1 committed
138
139
140
141
        printf("%s\n", context_file.c_str());
    }

    std::vector<chunk> chunks;
xuxzh1's avatar
init  
xuxzh1 committed
142
143
    for (auto & context_file : params.context_files) {
        std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
mashun1's avatar
v1  
mashun1 committed
144
145
146
147
148
149
150
151
        chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
    }
    printf("Number of chunks: %ld\n", chunks.size());

    llama_backend_init();
    llama_numa_init(params.numa);

    // load the model
xuxzh1's avatar
init  
xuxzh1 committed
152
153
154
155
156
    llama_init_result llama_init = llama_init_from_gpt_params(params);

    llama_model * model = llama_init.model;
    llama_context * ctx = llama_init.context;

mashun1's avatar
v1  
mashun1 committed
157
158
159
160
161
162
163
164
    if (model == NULL) {
        fprintf(stderr, "%s: error: unable to load model\n", __func__);
        return 1;
    }

    const int n_ctx_train = llama_n_ctx_train(model);
    const int n_ctx = llama_n_ctx(ctx);

xuxzh1's avatar
init  
xuxzh1 committed
165
166
167
168
169
170
    const enum llama_pooling_type pooling_type = llama_pooling_type(ctx);
    if (pooling_type == LLAMA_POOLING_TYPE_NONE) {
        fprintf(stderr, "%s: error: pooling type NONE not supported\n", __func__);
        return 1;
    }

mashun1's avatar
v1  
mashun1 committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    if (n_ctx > n_ctx_train) {
        fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
                __func__, n_ctx_train, n_ctx);
    }

    // print system information
    {
        fprintf(stderr, "\n");
        fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
    }

    // max batch size
    const uint64_t n_batch = params.n_batch;
    GGML_ASSERT(params.n_batch >= params.n_ctx);

    // tokenize the prompts and trim
    for (auto & chunk : chunks) {
        auto inp = ::llama_tokenize(ctx, chunk.textdata, true, false);
        if (inp.size() > n_batch) {
            fprintf(stderr, "%s: error: chunk size (%lld) exceeds batch size (%lld), increase batch size and re-run\n",
                    __func__, (long long int) inp.size(), (long long int) n_batch);
            return 1;
        }
        // add eos if not present
xuxzh1's avatar
init  
xuxzh1 committed
195
        if (llama_token_eos(model) >= 0 && (inp.empty() || inp.back() != llama_token_eos(model))) {
mashun1's avatar
v1  
mashun1 committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
            inp.push_back(llama_token_eos(model));
        }
        chunk.tokens = inp;
    }

    // tokenization stats
    if (params.verbose_prompt) {
        for (int i = 0; i < (int) chunks.size(); i++) {
            fprintf(stderr, "%s: prompt %d: '%s'\n", __func__, i, chunks[i].textdata.c_str());
            fprintf(stderr, "%s: number of tokens in prompt = %zu\n", __func__, chunks[i].tokens.size());
            for (int j = 0; j < (int) chunks[i].tokens.size(); j++) {
                fprintf(stderr, "%6d -> '%s'\n", chunks[i].tokens[j], llama_token_to_piece(ctx, chunks[i].tokens[j]).c_str());
            }
            fprintf(stderr, "\n\n");
        }
    }

    // initialize batch
    const int n_chunks = chunks.size();
    struct llama_batch batch = llama_batch_init(n_batch, 0, 1);

    // allocate output
    const int n_embd = llama_n_embd(model);
    std::vector<float> embeddings(n_chunks * n_embd, 0);
    float * emb = embeddings.data();

    // break into batches
    int p = 0; // number of prompts processed already
    int s = 0; // number of prompts in current batch
    for (int k = 0; k < n_chunks; k++) {
        // clamp to n_batch tokens
        auto & inp = chunks[k].tokens;

        const uint64_t n_toks = inp.size();

        // encode if at capacity
        if (batch.n_tokens + n_toks > n_batch) {
            float * out = emb + p * n_embd;
            batch_decode(ctx, batch, out, s, n_embd);
            llama_batch_clear(batch);
            p += s;
            s = 0;
        }

        // add to batch
        batch_add_seq(batch, inp, s);
        s += 1;
    }

    // final batch
    float * out = emb + p * n_embd;
    batch_decode(ctx, batch, out, s, n_embd);

    // save embeddings to chunks
    for (int i = 0; i < n_chunks; i++) {
        chunks[i].embedding = std::vector<float>(emb + i * n_embd, emb + (i + 1) * n_embd);
        // clear tokens as they are no longer needed
        chunks[i].tokens.clear();
    }

    // start loop, receive query and return top k similar chunks based on cosine similarity
    std::string query;
    while (true) {
        printf("Enter query: ");
        std::getline(std::cin, query);
        std::vector<int32_t> query_tokens = llama_tokenize(ctx, query, true);

        struct llama_batch query_batch = llama_batch_init(n_batch, 0, 1);
        batch_add_seq(query_batch, query_tokens, 0);

        std::vector<float> query_emb(n_embd, 0);
        batch_decode(ctx, query_batch, query_emb.data(), 1, n_embd);

        llama_batch_clear(query_batch);

        // compute cosine similarities
        {
            std::vector<std::pair<int, float>> similarities;
            for (int i = 0; i < n_chunks; i++) {
                float sim = llama_embd_similarity_cos(chunks[i].embedding.data(), query_emb.data(), n_embd);
                similarities.push_back(std::make_pair(i, sim));
            }

            // sort similarities
            std::sort(similarities.begin(), similarities.end(), [](const std::pair<int, float> & a, const std::pair<int, float> & b) {
                return a.second > b.second;
            });

            printf("Top %d similar chunks:\n", params.sparams.top_k);
            for (int i = 0; i < std::min(params.sparams.top_k, (int) chunks.size()); i++) {
                printf("filename: %s\n", chunks[similarities[i].first].filename.c_str());
                printf("filepos: %lld\n", (long long int) chunks[similarities[i].first].filepos);
                printf("similarity: %f\n", similarities[i].second);
                printf("textdata:\n%s\n", chunks[similarities[i].first].textdata.c_str());
                printf("--------------------\n");
            }
        }
    }

    // clean up
    llama_print_timings(ctx);
    llama_free(ctx);
    llama_free_model(model);
    llama_backend_free();
}