sampling.cpp 16.6 KB
Newer Older
xuxzh1's avatar
update  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/**
 * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file
 *
 * MIT License
 *
 * Copyright (c) 2023-2024 The ggml authors
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "sampling.h"

#include "common.h"

#include <cmath>
#include <unordered_map>

// the ring buffer works similarly to std::deque, but with a fixed capacity
// TODO: deduplicate with llama-impl.h
template<typename T>
struct ring_buffer {
    ring_buffer(size_t cap) : capacity(cap), data(cap) {}

    T & front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[first];
    }

    const T & front() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[first];
    }

    T & back() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
    }

    const T & back() const {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        return data[pos];
    }

    void push_back(const T & value) {
        if (sz == capacity) {
            // advance the start when buffer is full
            first = (first + 1) % capacity;
        } else {
            sz++;
        }
        data[pos] = value;
        pos = (pos + 1) % capacity;
    }

    T pop_front() {
        if (sz == 0) {
            throw std::runtime_error("ring buffer is empty");
        }
        T value = data[first];
        first = (first + 1) % capacity;
        sz--;
        return value;
    }

    const T & rat(size_t i) const {
        if (i >= sz) {
            throw std::runtime_error("ring buffer: index out of bounds");
        }
        return data[(first + sz - i - 1) % capacity];
    }

    std::vector<T> to_vector() const {
        std::vector<T> result;
        result.reserve(sz);
        for (size_t i = 0; i < sz; i++) {
            result.push_back(data[(first + i) % capacity]);
        }
        return result;
    }

    void clear() {
        // here only reset the status of the buffer
        sz = 0;
        first = 0;
        pos = 0;
    }

    bool empty() const {
        return sz == 0;
    }

    size_t size() const {
        return sz;
    }

    size_t capacity = 0;
    size_t sz = 0;
    size_t first = 0;
    size_t pos = 0;
    std::vector<T> data;
};

struct gpt_sampler {
    gpt_sampler_params params;

    struct llama_sampler * grmr;
    struct llama_sampler * chain;

    ring_buffer<llama_token> prev;

    std::vector<llama_token_data> cur;

    llama_token_data_array cur_p;

    void set_logits(struct llama_context * ctx, int idx) {
        const auto * logits = llama_get_logits_ith(ctx, idx);

        const int n_vocab = llama_n_vocab(llama_get_model(ctx));

        cur.resize(n_vocab);

        for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
            cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
        }

        cur_p = { cur.data(), cur.size(), -1, false };
    }
};

std::string gpt_sampler_params::print() const {
    char result[1024];

    snprintf(result, sizeof(result),
            "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n"
            "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n"
            "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f",
            penalty_last_n, penalty_repeat, penalty_freq, penalty_present,
            top_k, tfs_z, top_p, min_p, typ_p, temp,
            mirostat, mirostat_eta, mirostat_tau);

    return std::string(result);
}

struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) {
    llama_sampler_chain_params lparams = llama_sampler_chain_default_params();

    lparams.no_perf = params.no_perf;

    auto * result = new gpt_sampler {
        /* .params = */ params,
        /* .grmr   = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"),
        /* .chain  = */ llama_sampler_chain_init(lparams),
        /* .prev   = */ ring_buffer<llama_token>(std::max(32, params.n_prev)),
        /* .cur    = */ {},
        /* .cur_p  = */ {},
    };

    llama_sampler_chain_add(result->chain,
            llama_sampler_init_logit_bias(
                llama_n_vocab(model),
                params.logit_bias.size(),
                params.logit_bias.data()));

    llama_sampler_chain_add(result->chain,
            llama_sampler_init_penalties(
                llama_n_vocab  (model),
                llama_token_eos(model),
                llama_token_nl (model),
                params.penalty_last_n,
                params.penalty_repeat,
                params.penalty_freq,
                params.penalty_present,
                params.penalize_nl,
                params.ignore_eos));

    if (params.temp > 0.0f) {
        if (params.mirostat == 0) {
            for (const auto & cnstr : params.samplers) {
                switch (cnstr) {
                    case GPT_SAMPLER_TYPE_TOP_K:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_top_k    (params.top_k));
                        break;
                    case GPT_SAMPLER_TYPE_TOP_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_top_p    (params.top_p, params.min_keep));
                        break;
                    case GPT_SAMPLER_TYPE_MIN_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_min_p    (params.min_p, params.min_keep));
                        break;
                    case GPT_SAMPLER_TYPE_TFS_Z:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep));
                        break;
                    case GPT_SAMPLER_TYPE_TYPICAL_P:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_typical  (params.typ_p, params.min_keep));
                        break;
                    case GPT_SAMPLER_TYPE_TEMPERATURE:
                        llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent));
                        break;
                    default:
                        GGML_ASSERT(false && "unknown sampler type");
                }
            }
            llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
            llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed));
        } else if (params.mirostat == 1) {
            llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
            llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100));
        } else if (params.mirostat == 2) {
            llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp));
            llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta));
        } else {
            GGML_ASSERT(false && "unknown mirostat version");
        }
    } else {
        if (params.n_probs > 0) {
            // some use cases require to sample greedily, but still obtain the probabilities of the top tokens
            // ref: https://github.com/ggerganov/llama.cpp/pull/9605
            //
            // the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but
            // it is much faster, since we avoid sorting all tokens and should give a good approximation
            llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs));
            llama_sampler_chain_add(result->chain, llama_sampler_init_softmax());
        }
        llama_sampler_chain_add(result->chain, llama_sampler_init_greedy());
    }

    return result;
}

void gpt_sampler_free(struct gpt_sampler * gsmpl) {
    if (gsmpl) {
        llama_sampler_free(gsmpl->grmr);

        llama_sampler_free(gsmpl->chain);

        delete gsmpl;
    }
}

void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) {
    if (accept_grammar) {
        llama_sampler_accept(gsmpl->grmr, token);
    }

    llama_sampler_accept(gsmpl->chain, token);

    gsmpl->prev.push_back(token);
}

void gpt_sampler_reset(struct gpt_sampler * gsmpl) {
    llama_sampler_reset(gsmpl->grmr);

    llama_sampler_reset(gsmpl->chain);
}

struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) {
    return new gpt_sampler {
        /* .params = */ gsmpl->params,
        /* .grmr   = */ llama_sampler_clone(gsmpl->grmr),
        /* .chain  = */ llama_sampler_clone(gsmpl->chain),
        /* .prev   = */ gsmpl->prev,
        /* .cur    = */ gsmpl->cur,
        /* .cur_p  = */ gsmpl->cur_p,
    };
}

void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) {
    // TODO: measure grammar performance

    if (gsmpl) {
        llama_perf_sampler_print(gsmpl->chain);
    }
    if (ctx) {
        llama_perf_context_print(ctx);
    }
}

llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) {
    gsmpl->set_logits(ctx, idx);

    auto & grmr  = gsmpl->grmr;
    auto & chain = gsmpl->chain;
    auto & cur_p = gsmpl->cur_p; // initialized by set_logits

    if (grammar_first) {
        llama_sampler_apply(grmr, &cur_p);
    }

    llama_sampler_apply(chain, &cur_p);

    GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration");

    const llama_token id = cur_p.data[cur_p.selected].id;

    if (grammar_first) {
        return id;
    }

    // check if it the sampled token fits the grammar
    {
        llama_token_data       single_token_data       = { id, 1.0f, 0.0f };
        llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false };

        llama_sampler_apply(grmr, &single_token_data_array);

        const bool is_valid = single_token_data_array.data[0].logit != -INFINITY;
        if (is_valid) {
            return id;
        }
    }

    // resampling:
    // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain
    gsmpl->set_logits(ctx, idx);

    llama_sampler_apply(grmr,  &cur_p);
    llama_sampler_apply(chain, &cur_p);

    GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration");

    return cur_p.data[cur_p.selected].id;
}

uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) {
    return llama_sampler_get_seed(gsmpl->chain);
}

// helpers

llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) {
    return &gsmpl->cur_p;
}

llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) {
    return gsmpl->prev.rat(0);
}

std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) {
    std::string result = "logits ";

    for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) {
        const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i);
        result += std::string("-> ") + llama_sampler_name(smpl) + " ";
    }

    return result;
}

std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) {
    n = std::min(n, (int) gsmpl->prev.size());

    if (n <= 0) {
        return "";
    }

    std::string result;
    result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab

    for (int i = n - 1; i >= 0; i--) {
        const llama_token id = gsmpl->prev.rat(i);

        GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen");

        result += llama_token_to_piece(ctx_main, id);
    }

    return result;
}

char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) {
    switch (cnstr) {
        case GPT_SAMPLER_TYPE_TOP_K:       return 'k';
        case GPT_SAMPLER_TYPE_TFS_Z:       return 'f';
        case GPT_SAMPLER_TYPE_TYPICAL_P:   return 'y';
        case GPT_SAMPLER_TYPE_TOP_P:       return 'p';
        case GPT_SAMPLER_TYPE_MIN_P:       return 'm';
        case GPT_SAMPLER_TYPE_TEMPERATURE: return 't';
        default : return '?';
    }
}

std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) {
    switch (cnstr) {
        case GPT_SAMPLER_TYPE_TOP_K:       return "top_k";
        case GPT_SAMPLER_TYPE_TFS_Z:       return "tfs_z";
        case GPT_SAMPLER_TYPE_TYPICAL_P:   return "typ_p";
        case GPT_SAMPLER_TYPE_TOP_P:       return "top_p";
        case GPT_SAMPLER_TYPE_MIN_P:       return "min_p";
        case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature";
        default : return "";
    }
}

std::vector<gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
    std::unordered_map<std::string, gpt_sampler_type> sampler_canonical_name_map {
        { "top_k",       GPT_SAMPLER_TYPE_TOP_K },
        { "top_p",       GPT_SAMPLER_TYPE_TOP_P },
        { "typ_p",       GPT_SAMPLER_TYPE_TYPICAL_P },
        { "min_p",       GPT_SAMPLER_TYPE_MIN_P },
        { "tfs_z",       GPT_SAMPLER_TYPE_TFS_Z },
        { "temperature", GPT_SAMPLER_TYPE_TEMPERATURE },
    };

    // since samplers names are written multiple ways
    // make it ready for both system names and input names
    std::unordered_map<std::string, gpt_sampler_type> sampler_alt_name_map {
        { "top-k",       GPT_SAMPLER_TYPE_TOP_K },
        { "top-p",       GPT_SAMPLER_TYPE_TOP_P },
        { "nucleus",     GPT_SAMPLER_TYPE_TOP_P },
        { "typical-p",   GPT_SAMPLER_TYPE_TYPICAL_P },
        { "typical",     GPT_SAMPLER_TYPE_TYPICAL_P },
        { "typ-p",       GPT_SAMPLER_TYPE_TYPICAL_P },
        { "typ",         GPT_SAMPLER_TYPE_TYPICAL_P },
        { "min-p",       GPT_SAMPLER_TYPE_MIN_P },
        { "tfs-z",       GPT_SAMPLER_TYPE_TFS_Z },
        { "tfs",         GPT_SAMPLER_TYPE_TFS_Z },
        { "temp",        GPT_SAMPLER_TYPE_TEMPERATURE },
    };

    std::vector<gpt_sampler_type> samplers;
    samplers.reserve(names.size());

    for (const auto & name : names) {
        auto sampler = sampler_canonical_name_map.find(name);
        if (sampler != sampler_canonical_name_map.end()) {
            samplers.push_back(sampler->second);
        } else {
            if (allow_alt_names) {
                sampler = sampler_alt_name_map.find(name);
                if (sampler != sampler_alt_name_map.end()) {
                    samplers.push_back(sampler->second);
                }
            }
        }
    }

    return samplers;
}

std::vector<gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars) {
    std::unordered_map<char, gpt_sampler_type> sampler_name_map = {
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K),       GPT_SAMPLER_TYPE_TOP_K },
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z),       GPT_SAMPLER_TYPE_TFS_Z },
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P),   GPT_SAMPLER_TYPE_TYPICAL_P },
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P),       GPT_SAMPLER_TYPE_TOP_P },
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P),       GPT_SAMPLER_TYPE_MIN_P },
        { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE }
    };

    std::vector<gpt_sampler_type> samplers;
    samplers.reserve(chars.size());

    for (const auto & c : chars) {
        const auto sampler = sampler_name_map.find(c);
        if (sampler != sampler_name_map.end()) {
            samplers.push_back(sampler->second);
        }
    }

    return samplers;
}