convert_llama.go 6.17 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
package convert

import (
	"cmp"
	"fmt"
xuxzh1's avatar
update  
xuxzh1 committed
6
	"math"
xuxzh1's avatar
init  
xuxzh1 committed
7
8
9
10
11
12
13
14
	"strings"

	"github.com/pdevine/tensor"
	"github.com/pdevine/tensor/native"

	"github.com/ollama/ollama/llm"
)

xuxzh1's avatar
update  
xuxzh1 committed
15
16
type llamaModel struct {
	ModelParameters
xuxzh1's avatar
init  
xuxzh1 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
	NLayers               uint32  `json:"n_layers"`
	NumHiddenLayers       uint32  `json:"num_hidden_layers"`
	NLayer                uint32  `json:"n_layer"`
	MaxPositionEmbeddings uint32  `json:"max_position_embeddings"`
	NCtx                  uint32  `json:"n_ctx"`
	HiddenSize            uint32  `json:"hidden_size"`
	NEmbd                 uint32  `json:"n_embd"`
	IntermediateSize      uint32  `json:"intermediate_size"`
	NInner                uint32  `json:"n_inner"`
	NumAttentionHeads     uint32  `json:"num_attention_heads"`
	NHead                 uint32  `json:"n_head"`
	NumKeyValueHeads      uint32  `json:"num_key_value_heads"`
	RopeTheta             float32 `json:"rope_theta"`
	RopeScaling           struct {
xuxzh1's avatar
update  
xuxzh1 committed
31
32
33
34
35
36
37
38
		Type                            string  `json:"type"`
		RopeType                        string  `json:"rope_type"`
		Factor                          float32 `json:"factor"`
		LowFrequencyFactor              float32 `json:"low_freq_factor"`
		HighFrequencyFactor             float32 `json:"high_freq_factor"`
		OriginalMaxPositionalEmbeddings uint32  `json:"original_max_positional_embeddings"`

		factors ropeFactor
xuxzh1's avatar
init  
xuxzh1 committed
39
40
41
42
43
44
45
46
	} `json:"rope_scaling"`
	RMSNormEPS       float32 `json:"rms_norm_eps"`
	LayerNormEPS     float32 `json:"layer_norm_eps"`
	LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
	NormEpsilon      float32 `json:"norm_epsilon"`
	HeadDim          uint32  `json:"head_dim"`
}

xuxzh1's avatar
update  
xuxzh1 committed
47
var _ ModelConverter = (*llamaModel)(nil)
xuxzh1's avatar
init  
xuxzh1 committed
48

xuxzh1's avatar
update  
xuxzh1 committed
49
50
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
	kv := p.ModelParameters.KV(t)
xuxzh1's avatar
init  
xuxzh1 committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
	kv["general.architecture"] = "llama"
	kv["llama.vocab_size"] = p.VocabSize

	kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)

	if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
		kv["llama.context_length"] = contextLength
	}

	if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
		kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
	}

	if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
		kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
	}

	if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
		kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
		kv["llama.rope.dimension_count"] = p.HiddenSize / headCount
	}

	if p.RopeTheta > 0 {
		kv["llama.rope.freq_base"] = p.RopeTheta
	}

	if p.RopeScaling.Type == "linear" {
		kv["llama.rope.scaling.type"] = p.RopeScaling.Type
		kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
xuxzh1's avatar
update  
xuxzh1 committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
	} else if p.RopeScaling.RopeType == "llama3" {
		dim := p.HiddenSize / p.NumAttentionHeads
		for i := uint32(0); i < dim; i += 2 {
			factor := cmp.Or(p.RopeScaling.Factor, 8.0)
			factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
			factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)

			original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
			lambdaLow := float32(original) / factorLow
			lambdaHigh := float32(original) / factorHigh

			lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
			if lambda < float64(lambdaHigh) {
				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
			} else if lambda > float64(lambdaLow) {
				p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
			} else {
				smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
				p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
			}
		}
xuxzh1's avatar
init  
xuxzh1 committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
	}

	if p.NumKeyValueHeads > 0 {
		kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads
	}

	if p.RMSNormEPS > 0 {
		kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
	}

	if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
		kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon
	}

	if p.HeadDim > 0 {
		kv["llama.attention.key_length"] = p.HeadDim
		kv["llama.attention.value_length"] = p.HeadDim
	}

	return kv
}

xuxzh1's avatar
update  
xuxzh1 committed
123
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
xuxzh1's avatar
init  
xuxzh1 committed
124
	var out []llm.Tensor
xuxzh1's avatar
update  
xuxzh1 committed
125
126
127
128
129
130
131
132
133
134

	if p.RopeScaling.factors != nil {
		out = append(out, llm.Tensor{
			Name:     "rope_freqs.weight",
			Kind:     0,
			Shape:    []uint64{uint64(len(p.RopeScaling.factors))},
			WriterTo: p.RopeScaling.factors,
		})
	}

xuxzh1's avatar
init  
xuxzh1 committed
135
	for _, t := range ts {
xuxzh1's avatar
update  
xuxzh1 committed
136
137
		if strings.HasSuffix(t.Name(), "attn_q.weight") ||
			strings.HasSuffix(t.Name(), "attn_k.weight") {
xuxzh1's avatar
init  
xuxzh1 committed
138
139
140
141
			t.SetRepacker(p.repack)
		}

		out = append(out, llm.Tensor{
xuxzh1's avatar
update  
xuxzh1 committed
142
			Name:     t.Name(),
xuxzh1's avatar
init  
xuxzh1 committed
143
144
145
146
147
148
149
150
151
			Kind:     t.Kind(),
			Shape:    t.Shape(),
			WriterTo: t,
		})
	}

	return out
}

xuxzh1's avatar
update  
xuxzh1 committed
152
153
func (p *llamaModel) Replacements() []string {
	return []string{
xuxzh1's avatar
init  
xuxzh1 committed
154
155
156
157
158
159
160
161
162
163
164
165
166
		"lm_head", "output",
		"model.embed_tokens", "token_embd",
		"model.norm", "output_norm",
		"model.layers", "blk",
		"input_layernorm", "attn_norm",
		"self_attn.q_proj", "attn_q",
		"self_attn.k_proj", "attn_k",
		"self_attn.v_proj", "attn_v",
		"self_attn.o_proj", "attn_output",
		"mlp.gate_proj", "ffn_gate",
		"mlp.down_proj", "ffn_down",
		"mlp.up_proj", "ffn_up",
		"post_attention_layernorm", "ffn_norm",
xuxzh1's avatar
update  
xuxzh1 committed
167
	}
xuxzh1's avatar
init  
xuxzh1 committed
168
169
}

xuxzh1's avatar
update  
xuxzh1 committed
170
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
xuxzh1's avatar
init  
xuxzh1 committed
171
172
173
174
175
176
	var dims []int
	for _, dim := range shape {
		dims = append(dims, int(dim))
	}

	var heads uint32
xuxzh1's avatar
update  
xuxzh1 committed
177
	if strings.HasSuffix(name, "attn_q.weight") {
xuxzh1's avatar
init  
xuxzh1 committed
178
		heads = p.NumAttentionHeads
xuxzh1's avatar
update  
xuxzh1 committed
179
	} else if strings.HasSuffix(name, "attn_k.weight") {
xuxzh1's avatar
init  
xuxzh1 committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
		heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
	} else {
		return nil, fmt.Errorf("unknown tensor for repack: %s", name)
	}

	n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
	if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
		return nil, err
	}

	if err := n.T(0, 2, 1, 3); err != nil {
		return nil, err
	}

	if err := n.Reshape(dims...); err != nil {
		return nil, err
	}

	if err := n.Transpose(); err != nil {
		return nil, err
	}

	ts, err := native.SelectF32(n, 1)
	if err != nil {
		return nil, err
	}

	var f32s []float32
	for _, t := range ts {
		f32s = append(f32s, t...)
	}

	return f32s, nil
}