Unverified Commit fd4ea8ef authored by Zhuohan Li's avatar Zhuohan Li Committed by GitHub
Browse files

Use NCCL instead of ray for control-plane communication to remove serialization overhead (#2221)

parent 1066cbd1
......@@ -255,7 +255,7 @@ class InternLMForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -291,7 +291,7 @@ class LlamaForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -287,7 +287,7 @@ class MistralForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -320,7 +320,7 @@ class MixtralModel(nn.Module):
positions: torch.Tensor,
kv_caches: List[KVCache],
input_metadata: InputMetadata,
) -> SamplerOutput:
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
......@@ -361,7 +361,7 @@ class MixtralForCausalLM(nn.Module):
self,
hidden_states: Optional[torch.Tensor],
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -276,7 +276,7 @@ class MPTForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -309,7 +309,7 @@ class OPTForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head_weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -280,7 +280,7 @@ class PhiForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
head = self.lm_head.linear
next_tokens = self.sampler(head.weight, hidden_states,
sampling_metadata, head.bias)
......
......@@ -247,7 +247,7 @@ class QWenLMHeadModel(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
......@@ -286,7 +286,7 @@ class YiForCausalLM(nn.Module):
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
) -> SamplerOutput:
) -> Optional[SamplerOutput]:
next_tokens = self.sampler(self.lm_head.weight, hidden_states,
sampling_metadata)
return next_tokens
......
import torch
from vllm.model_executor.parallel_utils.parallel_state import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
get_tensor_model_parallel_group,
)
......@@ -45,3 +46,61 @@ def tensor_model_parallel_all_gather(input_, dim=-1):
(world_size * input_size[dim], ) +
input_size[dim + 1:])
return output_tensor
def tensor_model_parallel_gather(input_, dst=0, dim=-1):
"""Gather the input tensor across model parallel group.
NOTE: We assume that the input tensor is on the same device across
all the ranks.
"""
world_size = get_tensor_model_parallel_world_size()
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
assert -input_.dim() <= dim < input_.dim(), (
f"Invalid dim ({dim}) for input tensor with shape {input_.size()}")
if dim < 0:
# Convert negative dim to positive.
dim += input_.dim()
# Allocate output tensor.
if get_tensor_model_parallel_rank() == dst:
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
else:
gather_list = None
# Gather.
torch.distributed.gather(input_,
gather_list,
dst=dst,
group=get_tensor_model_parallel_group())
if get_tensor_model_parallel_rank() == dst:
output_tensor = torch.cat(gather_list, dim=dim)
else:
output_tensor = None
return output_tensor
def broadcast(input_, src=0):
"""Broadcast the input tensor."""
world_size = torch.distributed.get_world_size()
assert 0 <= src < world_size, f"Invalid src rank ({src})"
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return input_
# Broadcast.
torch.distributed.broadcast(input_, src=src)
return input_
def broadcast_object_list(obj_list, src=0):
"""Broadcast the input object list."""
world_size = torch.distributed.get_world_size()
assert 0 <= src < world_size, f"Invalid src rank ({src})"
# Bypass the function if we are using only 1 GPU.
if world_size == 1:
return obj_list
# Broadcast.
torch.distributed.broadcast_object_list(obj_list, src=src)
return obj_list
from dataclasses import dataclass
from typing import Dict, List, Tuple
from typing import Dict, List, Optional, Tuple
import torch
......@@ -18,24 +18,29 @@ class SamplingMetadata:
seq_data: Seq_id -> SequenceData.
prompt_lens: Lengths of prompts.
selected_token_indices: Token indices selected for sampling.
categorized_sample_indices: SamplingType -> token indicies to sample.
categorized_sample_indices: SamplingType -> token indices to sample.
perform_sampling: Whether to perform sampling. This option is used to
make the sampling only happens in the driver worker, and disable
sampling in other worker processes.
"""
def __init__(
self,
seq_groups: List[Tuple[List[int], SamplingParams]],
seq_data: Dict[int, SequenceData],
prompt_lens: List[int],
seq_groups: Optional[List[Tuple[List[int], SamplingParams]]],
seq_data: Optional[Dict[int, SequenceData]],
prompt_lens: Optional[List[int]],
selected_token_indices: torch.Tensor,
categorized_sample_indices: Dict[SamplingType, torch.Tensor],
categorized_sample_indices: Optional[Dict[SamplingType, torch.Tensor]],
perform_sampling: bool = True,
) -> None:
self.seq_groups = seq_groups
self.seq_data = seq_data
self.prompt_lens = prompt_lens
self.selected_token_indices = selected_token_indices
self.categorized_sample_indices = categorized_sample_indices
self.perform_sampling = perform_sampling
self.num_prompts = len(prompt_lens)
self.num_prompts = len(prompt_lens) if prompt_lens is not None else 0
def __repr__(self) -> str:
return (
......@@ -44,7 +49,8 @@ class SamplingMetadata:
f"seq_data={self.seq_data}, "
f"prompt_lens={self.prompt_lens}, "
f"selected_token_indices={self.selected_token_indices}, "
f"categorized_sample_indices={self.categorized_sample_indices})")
f"categorized_sample_indices={self.categorized_sample_indices}), "
f"perform_sampling={self.perform_sampling})")
@dataclass
......
import enum
import os
import socket
import uuid
from platform import uname
from typing import List
import psutil
import torch
......@@ -55,7 +57,15 @@ def in_wsl() -> bool:
return "microsoft" in " ".join(uname()).lower()
def get_open_port():
def get_ip() -> str:
return socket.gethostbyname(socket.gethostname())
def get_open_port() -> int:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("", 0))
return s.getsockname()[1]
def set_cuda_visible_devices(device_ids: List[int]) -> None:
os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(map(str, device_ids))
import time
from typing import Dict, List, Tuple, Union
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
......@@ -8,6 +8,8 @@ import torch.nn as nn
from vllm.config import ModelConfig, ParallelConfig, SchedulerConfig
from vllm.logger import init_logger
from vllm.model_executor import get_model, InputMetadata, SamplingMetadata
from vllm.model_executor.parallel_utils.communication_op import (
broadcast, broadcast_object_list)
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.sequence import SamplerOutput, SequenceData, SequenceGroupMetadata
from vllm.utils import in_wsl
......@@ -28,10 +30,12 @@ class ModelRunner:
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
is_driver_worker: bool = False,
):
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.is_driver_worker = is_driver_worker
# model_config can be None in tests/samplers/test_sampler.py.
# FIXME(woosuk): This is a hack to make the tests work. Refactor this.
......@@ -70,7 +74,7 @@ class ModelRunner:
def _prepare_prompt(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata]:
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, List[int]]:
assert len(seq_group_metadata_list) > 0
input_tokens: List[List[int]] = []
input_positions: List[List[int]] = []
......@@ -135,14 +139,14 @@ class ModelRunner:
dtype=torch.long)
input_metadata = InputMetadata(
prompt_lens=prompt_lens,
is_prompt=True,
slot_mapping=slot_mapping,
max_context_len=None,
context_lens=None,
block_tables=None,
use_cuda_graph=False,
)
return input_tokens, input_positions, input_metadata
return input_tokens, input_positions, input_metadata, prompt_lens
def _prepare_decode(
self,
......@@ -203,32 +207,24 @@ class ModelRunner:
block_tables.append([])
batch_size = graph_batch_size
# When using CUDA graph, we don't need to make the tensors on the GPU
# because they will be eventually copied to the designated GPU buffer.
device = "cpu" if use_captured_graph else "cuda"
pin_memory = use_captured_graph and not self.in_wsl
input_tokens = _make_tensor_with_pad(input_tokens,
max_len=1,
pad=0,
dtype=torch.long,
device=device,
pin_memory=pin_memory)
device="cuda")
input_positions = _make_tensor_with_pad(input_positions,
max_len=1,
pad=0,
dtype=torch.long,
device=device,
pin_memory=pin_memory)
device="cuda")
slot_mapping = _make_tensor_with_pad(slot_mapping,
max_len=1,
pad=_PAD_SLOT_ID,
dtype=torch.long,
device=device,
pin_memory=pin_memory)
device="cuda")
context_lens = torch.tensor(context_lens,
dtype=torch.int,
device=device,
pin_memory=pin_memory)
device="cuda")
if use_captured_graph:
# The shape of graph_block_tables is
......@@ -237,17 +233,18 @@ class ModelRunner:
for i, block_table in enumerate(block_tables):
if block_table:
input_block_tables[i, :len(block_table)] = block_table
block_tables = torch.tensor(input_block_tables, device=device)
block_tables = torch.tensor(input_block_tables, device="cuda")
else:
block_tables = _make_tensor_with_pad(
block_tables,
max_len=max_context_len,
pad=0,
dtype=torch.int,
device="cuda",
)
input_metadata = InputMetadata(
prompt_lens=[],
is_prompt=False,
slot_mapping=slot_mapping,
max_context_len=max_context_len,
context_lens=context_lens,
......@@ -326,23 +323,127 @@ class ModelRunner:
)
return sampling_metadata
def prepare_input_tensors(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
) -> Tuple[torch.Tensor, torch.Tensor, InputMetadata, SamplingMetadata]:
if self.is_driver_worker:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
(input_tokens, input_positions, input_metadata,
prompt_lens) = self._prepare_prompt(seq_group_metadata_list)
else:
(input_tokens, input_positions, input_metadata
) = self._prepare_decode(seq_group_metadata_list)
prompt_lens = []
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
prompt_lens)
def get_size_or_none(x: Optional[torch.Tensor]):
return x.size() if x is not None else None
# Broadcast the input data. For input tensors, we first broadcast
# its shape and then broadcast the tensor to avoid high
# serialization cost.
py_data = {
"input_tokens_size":
input_tokens.size(),
"input_positions_size":
input_positions.size(),
"is_prompt":
input_metadata.is_prompt,
"slot_mapping_size":
get_size_or_none(input_metadata.slot_mapping),
"max_context_len":
input_metadata.max_context_len,
"context_lens_size":
get_size_or_none(input_metadata.context_lens),
"block_tables_size":
get_size_or_none(input_metadata.block_tables),
"use_cuda_graph":
input_metadata.use_cuda_graph,
"selected_token_indices_size":
sampling_metadata.selected_token_indices.size(),
}
broadcast_object_list([py_data], src=0)
# TODO(zhuohan): Combine the broadcasts or set async_op=True.
broadcast(input_tokens, src=0)
broadcast(input_positions, src=0)
if input_metadata.slot_mapping is not None:
broadcast(input_metadata.slot_mapping, src=0)
if input_metadata.context_lens is not None:
broadcast(input_metadata.context_lens, src=0)
if input_metadata.block_tables is not None:
broadcast(input_metadata.block_tables, src=0)
broadcast(sampling_metadata.selected_token_indices, src=0)
else:
receving_list = [None]
broadcast_object_list(receving_list, src=0)
py_data = receving_list[0]
input_tokens = torch.empty(*py_data["input_tokens_size"],
dtype=torch.long,
device="cuda")
broadcast(input_tokens, src=0)
input_positions = torch.empty(*py_data["input_positions_size"],
dtype=torch.long,
device="cuda")
broadcast(input_positions, src=0)
if py_data["slot_mapping_size"] is not None:
slot_mapping = torch.empty(*py_data["slot_mapping_size"],
dtype=torch.long,
device="cuda")
broadcast(slot_mapping, src=0)
else:
slot_mapping = None
if py_data["context_lens_size"] is not None:
context_lens = torch.empty(*py_data["context_lens_size"],
dtype=torch.int,
device="cuda")
broadcast(context_lens, src=0)
else:
context_lens = None
if py_data["block_tables_size"] is not None:
block_tables = torch.empty(*py_data["block_tables_size"],
dtype=torch.int,
device="cuda")
broadcast(block_tables, src=0)
else:
block_tables = None
selected_token_indices = torch.empty(
*py_data["selected_token_indices_size"],
dtype=torch.long,
device="cuda")
broadcast(selected_token_indices, src=0)
input_metadata = InputMetadata(
is_prompt=py_data["is_prompt"],
slot_mapping=slot_mapping,
max_context_len=py_data["max_context_len"],
context_lens=context_lens,
block_tables=block_tables,
use_cuda_graph=py_data["use_cuda_graph"],
)
sampling_metadata = SamplingMetadata(
seq_groups=None,
seq_data=None,
prompt_lens=None,
selected_token_indices=selected_token_indices,
categorized_sample_indices=None,
perform_sampling=False,
)
return input_tokens, input_positions, input_metadata, sampling_metadata
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> SamplerOutput:
# NOTE: We assume that all sequences in the group are all prompts or
# all decodes.
is_prompt = seq_group_metadata_list[0].is_prompt
# Prepare input tensors.
if is_prompt:
inputs = self._prepare_prompt(seq_group_metadata_list)
input_tokens, input_positions, input_metadata = inputs
else:
inputs = self._prepare_decode(seq_group_metadata_list)
input_tokens, input_positions, input_metadata = inputs
) -> Optional[SamplerOutput]:
input_tokens, input_positions, input_metadata, sampling_metadata = (
self.prepare_input_tensors(seq_group_metadata_list))
# Execute the model.
if input_metadata.use_cuda_graph:
graph_batch_size = input_tokens.shape[0]
......@@ -356,9 +457,6 @@ class ModelRunner:
input_metadata=input_metadata,
)
sampling_metadata = self._prepare_sample(seq_group_metadata_list,
input_metadata.prompt_lens)
# Sample the next token.
output = self.model.sample(
hidden_states=hidden_states,
......@@ -424,7 +522,7 @@ class ModelRunner:
for batch_size in reversed(_BATCH_SIZES_TO_CAPTURE):
# Create dummy input_metadata.
input_metadata = InputMetadata(
prompt_lens=[],
is_prompt=False,
slot_mapping=slot_mapping[:batch_size],
max_context_len=self.max_context_len_to_capture,
context_lens=context_lens[:batch_size],
......
......@@ -8,6 +8,8 @@ import torch.distributed
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.model_executor import set_random_seed
from vllm.model_executor.parallel_utils.communication_op import (
broadcast_object_list)
from vllm.model_executor.parallel_utils.parallel_state import (
initialize_model_parallel)
from vllm.sequence import SamplerOutput, SequenceGroupMetadata
......@@ -28,17 +30,23 @@ class Worker:
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
rank: Optional[int] = None,
distributed_init_method: Optional[str] = None,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
self.scheduler_config = scheduler_config
self.local_rank = local_rank
self.rank = rank
self.distributed_init_method = distributed_init_method
self.is_driver_worker = is_driver_worker
if self.is_driver_worker:
assert self.rank == 0, "The driver worker must have rank 0."
self.model_runner = ModelRunner(model_config, parallel_config,
scheduler_config)
scheduler_config, is_driver_worker)
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
......@@ -57,13 +65,7 @@ class Worker:
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
# Env vars will be set by Ray.
self.rank = self.rank if self.rank is not None else int(
os.getenv("RANK", "-1"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
self.device = torch.device(f"cuda:{local_rank}")
if self.rank < 0:
raise ValueError("Invalid or unspecified rank.")
self.device = torch.device(f"cuda:{self.local_rank}")
torch.cuda.set_device(self.device)
_check_if_gpu_supports_dtype(self.model_config.dtype)
......@@ -125,14 +127,12 @@ class Worker:
# the model initialization and profiling.
set_random_seed(self.model_config.seed)
@torch.inference_mode()
def execute_model(
def cache_swap(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
blocks_to_swap_in: Dict[int, int],
blocks_to_swap_out: Dict[int, int],
blocks_to_copy: Dict[int, List[int]],
) -> SamplerOutput:
) -> None:
# Issue cache operations.
issued_cache_op = False
if blocks_to_swap_in:
......@@ -152,8 +152,38 @@ class Worker:
if cache_events is not None:
for event in cache_events:
event.wait()
@torch.inference_mode()
def execute_model(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]] = None,
blocks_to_swap_in: Optional[Dict[int, int]] = None,
blocks_to_swap_out: Optional[Dict[int, int]] = None,
blocks_to_copy: Optional[Dict[int, List[int]]] = None,
) -> Optional[SamplerOutput]:
if self.is_driver_worker:
assert seq_group_metadata_list is not None
num_seq_groups = len(seq_group_metadata_list)
assert blocks_to_swap_in is not None
assert blocks_to_swap_out is not None
assert blocks_to_copy is not None
block_swapping_info = [
blocks_to_swap_in, blocks_to_swap_out, blocks_to_copy
]
broadcast_object_list([num_seq_groups] + block_swapping_info,
src=0)
else:
# num_seq_groups, blocks_to_swap_in, blocks_to_swap_out,
# blocks_to_copy (4 elements)
recv_data = [None] * 4
broadcast_object_list(recv_data, src=0)
num_seq_groups = recv_data[0]
block_swapping_info = recv_data[1:]
self.cache_swap(*block_swapping_info)
# If there is no input, we don't need to execute the model.
if not seq_group_metadata_list:
if num_seq_groups == 0:
return {}
output = self.model_runner.execute_model(seq_group_metadata_list,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment