Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
f26ecef8
Commit
f26ecef8
authored
May 07, 2024
by
zhuwenwen
Browse files
add llama_nn support
parent
96012705
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
16 additions
and
8 deletions
+16
-8
vllm/model_executor/layers/linear.py
vllm/model_executor/layers/linear.py
+13
-8
vllm/model_executor/model_loader.py
vllm/model_executor/model_loader.py
+3
-0
No files found.
vllm/model_executor/layers/linear.py
View file @
f26ecef8
...
...
@@ -15,8 +15,8 @@ from vllm.model_executor.utils import set_weight_attrs
from
vllm.logger
import
init_logger
import
os
logger
=
init_logger
(
__name__
)
USE_LLAMA_NN
=
int
(
os
.
environ
.
get
(
'LLAMA_NN'
,
'0'
))
==
1
def
adjust_marlin_shard
(
param
,
shard_size
,
shard_offset
):
...
...
@@ -57,6 +57,7 @@ class UnquantizedLinearMethod(LinearMethodBase):
def
__init__
(
self
,
separate_bias_add
:
bool
=
False
):
self
.
separate_bias_add
=
separate_bias_add
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
create_weights
(
self
,
input_size_per_partition
:
int
,
output_size_per_partition
:
int
,
input_size
:
int
,
...
...
@@ -78,7 +79,7 @@ class UnquantizedLinearMethod(LinearMethodBase):
if
bias
:
return
F
.
linear
(
x
,
weight
)
+
bias
return
F
.
linear
(
x
,
weight
)
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
weight
=
weight
.
reshape
(
weight
.
shape
[
1
],
-
1
)
return
torch
.
matmul
(
x
,
weight
)
else
:
...
...
@@ -201,6 +202,7 @@ class ColumnParallelLinear(torch.nn.Module):
})
else
:
self
.
register_parameter
(
"bias"
,
None
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
tp_rank
=
get_tensor_model_parallel_rank
()
...
...
@@ -212,7 +214,7 @@ class ColumnParallelLinear(torch.nn.Module):
loaded_weight
=
loaded_weight
.
narrow
(
output_dim
,
start_idx
,
shard_size
)
assert
param_data
.
shape
==
loaded_weight
.
shape
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
loaded_weight
=
loaded_weight
.
transpose
(
0
,
1
)
loaded_weight
=
loaded_weight
.
reshape
(
param_data
.
shape
[
0
],
-
1
)
param_data
.
copy_
(
loaded_weight
)
...
...
@@ -268,6 +270,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
assert
all
(
output_size
%
tp_size
==
0
for
output_size
in
output_sizes
)
super
().
__init__
(
input_size
,
sum
(
output_sizes
),
bias
,
gather_output
,
skip_bias_add
,
params_dtype
,
linear_method
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
...
...
@@ -320,7 +323,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
shard_size
,
shard_offset
=
adjust_marlin_shard
(
param
,
shard_size
,
shard_offset
)
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
param_data_
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
else
:
...
...
@@ -337,7 +340,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions."
)
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
assert
param_data_
.
shape
==
loaded_weight
.
shape
param_data_
.
copy_
(
loaded_weight
)
if
loaded_shard_id
==
1
:
...
...
@@ -404,6 +407,7 @@ class QKVParallelLinear(ColumnParallelLinear):
2
*
self
.
num_kv_heads
)
*
tp_size
*
self
.
head_size
super
().
__init__
(
input_size
,
output_size
,
bias
,
False
,
skip_bias_add
,
params_dtype
,
linear_method
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
...
...
@@ -467,7 +471,7 @@ class QKVParallelLinear(ColumnParallelLinear):
shard_size
,
shard_offset
=
adjust_marlin_shard
(
param
,
shard_size
,
shard_offset
)
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
param_data_
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
else
:
...
...
@@ -488,7 +492,7 @@ class QKVParallelLinear(ColumnParallelLinear):
"QKVParallelLinear, assume the weight is the same "
"for all partitions."
)
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
assert
param_data_
.
shape
==
loaded_weight
.
shape
param_data_
.
copy_
(
loaded_weight
)
if
loaded_shard_id
==
"v"
:
...
...
@@ -574,6 +578,7 @@ class RowParallelLinear(torch.nn.Module):
})
else
:
self
.
register_parameter
(
"bias"
,
None
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
tp_rank
=
get_tensor_model_parallel_rank
()
...
...
@@ -585,7 +590,7 @@ class RowParallelLinear(torch.nn.Module):
loaded_weight
=
loaded_weight
.
narrow
(
input_dim
,
start_idx
,
shard_size
)
assert
param_data
.
shape
==
loaded_weight
.
shape
if
USE_LLAMA_NN
:
if
self
.
use_llama_nn
:
loaded_weight
=
loaded_weight
.
transpose
(
0
,
1
)
loaded_weight
=
loaded_weight
.
reshape
(
param_data
.
shape
[
0
],
-
1
)
param_data
.
copy_
(
loaded_weight
)
...
...
vllm/model_executor/model_loader.py
View file @
f26ecef8
...
...
@@ -9,6 +9,7 @@ from vllm.config import DeviceConfig, ModelConfig
from
vllm.model_executor.models
import
ModelRegistry
from
vllm.model_executor.weight_utils
import
(
get_quant_config
,
initialize_dummy_weights
)
import
os
@
contextlib
.
contextmanager
...
...
@@ -22,6 +23,8 @@ def _set_default_torch_dtype(dtype: torch.dtype):
def
_get_model_architecture
(
model_config
:
ModelConfig
)
->
Type
[
nn
.
Module
]:
architectures
=
getattr
(
model_config
.
hf_config
,
"architectures"
,
[])
if
architectures
==
[
'LlamaForCausalLM'
]:
os
.
environ
[
'LLAMA_NN'
]
=
'1'
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
if
(
model_config
.
quantization
is
not
None
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment