Unverified Commit d6fa1be3 authored by Zhuohan Li's avatar Zhuohan Li Committed by GitHub
Browse files

[Quality] Add code formatter and linter (#326)

parent 0ffded81
# This Pylint rcfile contains a best-effort configuration to uphold the
# best-practices and style described in the Google Python style guide:
# https://google.github.io/styleguide/pyguide.html
#
# Its canonical open-source location is:
# https://google.github.io/styleguide/pylintrc
[MASTER]
# Files or directories to be skipped. They should be base names, not paths.
ignore=docs,parallel_utils
# Files or directories matching the regex patterns are skipped. The regex
# matches against base names, not paths.
ignore-patterns=
# Pickle collected data for later comparisons.
persistent=no
# List of plugins (as comma separated values of python modules names) to load,
# usually to register additional checkers.
load-plugins=
# Use multiple processes to speed up Pylint.
jobs=4
# Allow loading of arbitrary C extensions. Extensions are imported into the
# active Python interpreter and may run arbitrary code.
unsafe-load-any-extension=no
[MESSAGES CONTROL]
# Only show warnings with the listed confidence levels. Leave empty to show
# all. Valid levels: HIGH, INFERENCE, INFERENCE_FAILURE, UNDEFINED
confidence=
# Enable the message, report, category or checker with the given id(s). You can
# either give multiple identifier separated by comma (,) or put this option
# multiple time (only on the command line, not in the configuration file where
# it should appear only once). See also the "--disable" option for examples.
#enable=
# Disable the message, report, category or checker with the given id(s). You
# can either give multiple identifiers separated by comma (,) or put this
# option multiple times (only on the command line, not in the configuration
# file where it should appear only once).You can also use "--disable=all" to
# disable everything first and then reenable specific checks. For example, if
# you want to run only the similarities checker, you can use "--disable=all
# --enable=similarities". If you want to run only the classes checker, but have
# no Warning level messages displayed, use"--disable=all --enable=classes
# --disable=W"
disable=abstract-method,
apply-builtin,
arguments-differ,
attribute-defined-outside-init,
backtick,
bad-option-value,
basestring-builtin,
buffer-builtin,
c-extension-no-member,
consider-using-enumerate,
cmp-builtin,
cmp-method,
coerce-builtin,
coerce-method,
delslice-method,
div-method,
duplicate-code,
eq-without-hash,
execfile-builtin,
file-builtin,
filter-builtin-not-iterating,
fixme,
getslice-method,
global-statement,
hex-method,
idiv-method,
implicit-str-concat-in-sequence,
import-error,
import-self,
import-star-module-level,
inconsistent-return-statements,
input-builtin,
intern-builtin,
invalid-str-codec,
locally-disabled,
logging-fstring-interpolation, # added by vLLM
logging-not-lazy, # added by vLLM
long-builtin,
long-suffix,
map-builtin-not-iterating,
misplaced-comparison-constant,
missing-class-docstring, # TODO (vLLM): enable
missing-function-docstring,
missing-module-docstring, # TODO (vLLM): enable
metaclass-assignment,
next-method-called,
next-method-defined,
no-absolute-import,
no-else-break,
no-else-continue,
no-else-raise,
no-else-return,
no-init, # added
no-member,
no-name-in-module,
no-self-use,
nonzero-method,
oct-method,
old-division,
old-ne-operator,
old-octal-literal,
old-raise-syntax,
parameter-unpacking,
print-statement,
raising-string,
range-builtin-not-iterating,
raw_input-builtin,
rdiv-method,
reduce-builtin,
relative-import,
reload-builtin,
round-builtin,
setslice-method,
signature-differs,
standarderror-builtin,
suppressed-message,
sys-max-int,
too-few-public-methods,
too-many-ancestors,
too-many-arguments,
too-many-boolean-expressions,
too-many-branches,
too-many-instance-attributes,
too-many-locals,
too-many-nested-blocks,
too-many-public-methods,
too-many-return-statements,
too-many-statements,
trailing-newlines,
unichr-builtin,
unicode-builtin,
unnecessary-pass,
unpacking-in-except,
unspecified-encoding,
useless-else-on-loop,
useless-object-inheritance,
useless-suppression,
using-cmp-argument,
wrong-import-order,
xrange-builtin,
zip-builtin-not-iterating,
[REPORTS]
# Set the output format. Available formats are text, parseable, colorized, msvs
# (visual studio) and html. You can also give a reporter class, eg
# mypackage.mymodule.MyReporterClass.
output-format=text
# Tells whether to display a full report or only the messages
reports=no
# Python expression which should return a note less than 10 (10 is the highest
# note). You have access to the variables errors warning, statement which
# respectively contain the number of errors / warnings messages and the total
# number of statements analyzed. This is used by the global evaluation report
# (RP0004).
evaluation=10.0 - ((float(5 * error + warning + refactor + convention) / statement) * 10)
# Template used to display messages. This is a python new-style format string
# used to format the message information. See doc for all details
#msg-template=
[BASIC]
# Good variable names which should always be accepted, separated by a comma
good-names=main,_
# Bad variable names which should always be refused, separated by a comma
bad-names=
# Colon-delimited sets of names that determine each other's naming style when
# the name regexes allow several styles.
name-group=
# Include a hint for the correct naming format with invalid-name
include-naming-hint=no
# List of decorators that produce properties, such as abc.abstractproperty. Add
# to this list to register other decorators that produce valid properties.
property-classes=abc.abstractproperty,cached_property.cached_property,cached_property.threaded_cached_property,cached_property.cached_property_with_ttl,cached_property.threaded_cached_property_with_ttl
# Regular expression matching correct function names
function-rgx=^(?:(?P<exempt>setUp|tearDown|setUpModule|tearDownModule)|(?P<camel_case>_?[A-Z][a-zA-Z0-9]*)|(?P<snake_case>_?[a-z][a-z0-9_]*))$
# Regular expression matching correct variable names
variable-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct constant names
const-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct attribute names
attr-rgx=^_{0,2}[a-z][a-z0-9_]*$
# Regular expression matching correct argument names
argument-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class attribute names
class-attribute-rgx=^(_?[A-Z][A-Z0-9_]*|__[a-z0-9_]+__|_?[a-z][a-z0-9_]*)$
# Regular expression matching correct inline iteration names
inlinevar-rgx=^[a-z][a-z0-9_]*$
# Regular expression matching correct class names
class-rgx=^_?[A-Z][a-zA-Z0-9]*$
# Regular expression matching correct module names
module-rgx=^(_?[a-z][a-z0-9_]*|__init__)$
# Regular expression matching correct method names
method-rgx=(?x)^(?:(?P<exempt>_[a-z0-9_]+__|runTest|setUp|tearDown|setUpTestCase|tearDownTestCase|setupSelf|tearDownClass|setUpClass|(test|assert)_*[A-Z0-9][a-zA-Z0-9_]*|next)|(?P<camel_case>_{0,2}[A-Z][a-zA-Z0-9_]*)|(?P<snake_case>_{0,2}[a-z][a-z0-9_]*))$
# Regular expression which should only match function or class names that do
# not require a docstring.
no-docstring-rgx=(__.*__|main|test.*|.*test|.*Test)$
# Minimum line length for functions/classes that require docstrings, shorter
# ones are exempt.
docstring-min-length=10
[TYPECHECK]
# List of decorators that produce context managers, such as
# contextlib.contextmanager. Add to this list to register other decorators that
# produce valid context managers.
contextmanager-decorators=contextlib.contextmanager,contextlib2.contextmanager
# Tells whether missing members accessed in mixin class should be ignored. A
# mixin class is detected if its name ends with "mixin" (case insensitive).
ignore-mixin-members=yes
# List of module names for which member attributes should not be checked
# (useful for modules/projects where namespaces are manipulated during runtime
# and thus existing member attributes cannot be deduced by static analysis. It
# supports qualified module names, as well as Unix pattern matching.
ignored-modules=
# List of class names for which member attributes should not be checked (useful
# for classes with dynamically set attributes). This supports the use of
# qualified names.
ignored-classes=optparse.Values,thread._local,_thread._local
# List of members which are set dynamically and missed by pylint inference
# system, and so shouldn't trigger E1101 when accessed. Python regular
# expressions are accepted.
generated-members=
[FORMAT]
# Maximum number of characters on a single line.
max-line-length=80
# TODO(https://github.com/PyCQA/pylint/issues/3352): Direct pylint to exempt
# lines made too long by directives to pytype.
# Regexp for a line that is allowed to be longer than the limit.
ignore-long-lines=(?x)(
^\s*(\#\ )?<?https?://\S+>?$|
^\s*(from\s+\S+\s+)?import\s+.+$)
# Allow the body of an if to be on the same line as the test if there is no
# else.
single-line-if-stmt=yes
# Maximum number of lines in a module
max-module-lines=99999
# String used as indentation unit. The internal Google style guide mandates 2
# spaces. Google's externaly-published style guide says 4, consistent with
# PEP 8. Here, we use 2 spaces, for conformity with many open-sourced Google
# projects (like TensorFlow).
indent-string=' '
# Number of spaces of indent required inside a hanging or continued line.
indent-after-paren=4
# Expected format of line ending, e.g. empty (any line ending), LF or CRLF.
expected-line-ending-format=
[MISCELLANEOUS]
# List of note tags to take in consideration, separated by a comma.
notes=TODO
[STRING]
# This flag controls whether inconsistent-quotes generates a warning when the
# character used as a quote delimiter is used inconsistently within a module.
check-quote-consistency=yes
[VARIABLES]
# Tells whether we should check for unused import in __init__ files.
init-import=no
# A regular expression matching the name of dummy variables (i.e. expectedly
# not used).
dummy-variables-rgx=^\*{0,2}(_$|unused_|dummy_)
# List of additional names supposed to be defined in builtins. Remember that
# you should avoid to define new builtins when possible.
additional-builtins=
# List of strings which can identify a callback function by name. A callback
# name must start or end with one of those strings.
callbacks=cb_,_cb
# List of qualified module names which can have objects that can redefine
# builtins.
redefining-builtins-modules=six,six.moves,past.builtins,future.builtins,functools
[LOGGING]
# Logging modules to check that the string format arguments are in logging
# function parameter format
logging-modules=logging,absl.logging,tensorflow.io.logging
[SIMILARITIES]
# Minimum lines number of a similarity.
min-similarity-lines=4
# Ignore comments when computing similarities.
ignore-comments=yes
# Ignore docstrings when computing similarities.
ignore-docstrings=yes
# Ignore imports when computing similarities.
ignore-imports=no
[SPELLING]
# Spelling dictionary name. Available dictionaries: none. To make it working
# install python-enchant package.
spelling-dict=
# List of comma separated words that should not be checked.
spelling-ignore-words=
# A path to a file that contains private dictionary; one word per line.
spelling-private-dict-file=
# Tells whether to store unknown words to indicated private dictionary in
# --spelling-private-dict-file option instead of raising a message.
spelling-store-unknown-words=no
[IMPORTS]
# Deprecated modules which should not be used, separated by a comma
deprecated-modules=regsub,
TERMIOS,
Bastion,
rexec,
sets
# Create a graph of every (i.e. internal and external) dependencies in the
# given file (report RP0402 must not be disabled)
import-graph=
# Create a graph of external dependencies in the given file (report RP0402 must
# not be disabled)
ext-import-graph=
# Create a graph of internal dependencies in the given file (report RP0402 must
# not be disabled)
int-import-graph=
# Force import order to recognize a module as part of the standard
# compatibility libraries.
known-standard-library=
# Force import order to recognize a module as part of a third party library.
known-third-party=enchant, absl
# Analyse import fallback blocks. This can be used to support both Python 2 and
# 3 compatible code, which means that the block might have code that exists
# only in one or another interpreter, leading to false positives when analysed.
analyse-fallback-blocks=no
[CLASSES]
# List of method names used to declare (i.e. assign) instance attributes.
defining-attr-methods=__init__,
__new__,
setUp
# List of member names, which should be excluded from the protected access
# warning.
exclude-protected=_asdict,
_fields,
_replace,
_source,
_make
# List of valid names for the first argument in a class method.
valid-classmethod-first-arg=cls,
class_
# List of valid names for the first argument in a metaclass class method.
valid-metaclass-classmethod-first-arg=mcs
[EXCEPTIONS]
# Exceptions that will emit a warning when being caught. Defaults to
# "Exception"
overgeneral-exceptions=StandardError,
Exception,
BaseException
......@@ -49,12 +49,15 @@ If not, please file a new issue, providing as much relevant information as possi
In general, we adhere to [Google Python style guide](https://google.github.io/styleguide/pyguide.html) and [Google C++ style guide](https://google.github.io/styleguide/cppguide.html).
We include a formatting script [`format.sh`](./format.sh) to format the code.
### Pull Requests
When submitting a pull request:
1. Make sure your code has been rebased on top of the latest commit on the main branch.
2. Include a detailed description of the changes in the pull request.
2. Ensure code is properly formatted by running [`format.sh`](./format.sh).
3. Include a detailed description of the changes in the pull request.
Explain why you made the changes you did.
If your pull request fixes an open issue, please include a reference to it in the description.
......
......@@ -14,7 +14,9 @@ def clear_line(n: int = 1) -> None:
print(LINE_UP, end=LINE_CLEAR, flush=True)
def post_http_request(prompt: str, api_url: str, n: int = 1,
def post_http_request(prompt: str,
api_url: str,
n: int = 1,
stream: bool = False) -> requests.Response:
headers = {"User-Agent": "Test Client"}
pload = {
......@@ -30,7 +32,8 @@ def post_http_request(prompt: str, api_url: str, n: int = 1,
def get_streaming_response(response: requests.Response) -> Iterable[List[str]]:
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False,
for chunk in response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
......
......@@ -12,9 +12,14 @@ def http_bot(prompt):
"stream": True,
"max_tokens": 128,
}
response = requests.post(args.model_url, headers=headers, json=pload, stream=True)
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
response = requests.post(args.model_url,
headers=headers,
json=pload,
stream=True)
for chunk in response.iter_lines(chunk_size=8192,
decode_unicode=False,
delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"][0]
......@@ -23,11 +28,11 @@ def http_bot(prompt):
def build_demo():
with gr.Blocks() as demo:
gr.Markdown(
"# vLLM text completion demo\n"
)
inputbox = gr.Textbox(label="Input", placeholder="Enter text and press ENTER")
outputbox = gr.Textbox(label="Output", placeholder="Generated result from the model")
gr.Markdown("# vLLM text completion demo\n")
inputbox = gr.Textbox(label="Input",
placeholder="Enter text and press ENTER")
outputbox = gr.Textbox(label="Output",
placeholder="Generated result from the model")
inputbox.submit(http_bot, [inputbox], [outputbox])
return demo
......@@ -36,7 +41,9 @@ if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8001)
parser.add_argument("--model-url", type=str, default="http://localhost:8000/generate")
parser.add_argument("--model-url",
type=str,
default="http://localhost:8000/generate")
args = parser.parse_args()
demo = build_demo()
......
......@@ -14,9 +14,14 @@ def main(args: argparse.Namespace):
("To be or not to be,",
SamplingParams(temperature=0.8, top_k=5, presence_penalty=0.2)),
("What is the meaning of life?",
SamplingParams(n=2, best_of=5, temperature=0.8, top_p=0.95, frequency_penalty=0.1)),
SamplingParams(n=2,
best_of=5,
temperature=0.8,
top_p=0.95,
frequency_penalty=0.1)),
("It is only with the heart that one can see rightly",
SamplingParams(n=3, best_of=3, use_beam_search=True, temperature=0.0)),
SamplingParams(n=3, best_of=3, use_beam_search=True,
temperature=0.0)),
]
# Run the engine by calling `engine.step()` manually.
......
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
......
......@@ -12,8 +12,13 @@ print("Models:", models)
# Test completion API
stream = True
completion = openai.Completion.create(
model=model, prompt="A robot may not injure a human being", echo=False, n=2,
best_of=3, stream=stream, logprobs=3)
model=model,
prompt="A robot may not injure a human being",
echo=False,
n=2,
best_of=3,
stream=stream,
logprobs=3)
# print the completion
if stream:
......
#!/usr/bin/env bash
# YAPF formatter, adapted from ray and skypilot.
#
# Usage:
# # Do work and commit your work.
# # Format files that differ from origin/main.
# bash format.sh
# # Commit changed files with message 'Run yapf and pylint'
#
#
# YAPF + Clang formatter (if installed). This script formats all changed files from the last mergebase.
# You are encouraged to run this locally before pushing changes for review.
# Cause the script to exit if a single command fails
set -eo pipefail
# this stops git rev-parse from failing if we run this from the .git directory
builtin cd "$(dirname "${BASH_SOURCE:-$0}")"
ROOT="$(git rev-parse --show-toplevel)"
builtin cd "$ROOT" || exit 1
YAPF_VERSION=$(yapf --version | awk '{print $2}')
PYLINT_VERSION=$(pylint --version | head -n 1 | awk '{print $2}')
MYPY_VERSION=$(mypy --version | awk '{print $2}')
# # params: tool name, tool version, required version
tool_version_check() {
if [[ $2 != $3 ]]; then
echo "Wrong $1 version installed: $3 is required, not $2."
exit 1
fi
}
tool_version_check "yapf" $YAPF_VERSION "$(grep yapf requirements-dev.txt | cut -d'=' -f3)"
tool_version_check "pylint" $PYLINT_VERSION "$(grep "pylint==" requirements-dev.txt | cut -d'=' -f3)"
tool_version_check "mypy" "$MYPY_VERSION" "$(grep mypy requirements-dev.txt | cut -d'=' -f3)"
YAPF_FLAGS=(
'--recursive'
'--parallel'
)
YAPF_EXCLUDES=(
'--exclude' 'build/**'
'--exclude' 'vllm/model_executor/parallel_utils/**'
)
# Format specified files
format() {
yapf --in-place "${YAPF_FLAGS[@]}" "$@"
}
# Format files that differ from main branch. Ignores dirs that are not slated
# for autoformat yet.
format_changed() {
# The `if` guard ensures that the list of filenames is not empty, which
# could cause yapf to receive 0 positional arguments, making it hang
# waiting for STDIN.
#
# `diff-filter=ACM` and $MERGEBASE is to ensure we only format files that
# exist on both branches.
MERGEBASE="$(git merge-base origin/main HEAD)"
if ! git diff --diff-filter=ACM --quiet --exit-code "$MERGEBASE" -- '*.py' '*.pyi' &>/dev/null; then
git diff --name-only --diff-filter=ACM "$MERGEBASE" -- '*.py' '*.pyi' | xargs -P 5 \
yapf --in-place "${YAPF_EXCLUDES[@]}" "${YAPF_FLAGS[@]}"
fi
}
# Format all files
format_all() {
yapf --in-place "${YAPF_FLAGS[@]}" "${YAPF_EXCLUDES[@]}" vllm
}
## This flag formats individual files. --files *must* be the first command line
## arg to use this option.
if [[ "$1" == '--files' ]]; then
format "${@:2}"
# If `--all` is passed, then any further arguments are ignored and the
# entire python directory is formatted.
elif [[ "$1" == '--all' ]]; then
format_all
else
# Format only the files that changed in last commit.
format_changed
fi
echo 'vLLM yapf: Done'
# Run mypy
# TODO(zhuohan): Enable mypy
# echo 'vLLM mypy:'
# mypy
# Run Pylint
echo 'vLLM Pylint:'
pylint vllm
if ! git diff --quiet &>/dev/null; then
echo 'Reformatted files. Please review and stage the changes.'
echo 'Changes not staged for commit:'
echo
git --no-pager diff --name-only
exit 1
fi
mypy
# formatting
yapf==0.32.0
pylint==2.8.2
# type checking
mypy==0.991
types-PyYAML
types-requests
types-setuptools
# testing
pytest
......@@ -60,7 +60,7 @@ def ref_single_query_cached_kv_attention(
keys = torch.stack(keys, dim=0)
values = torch.stack(values, dim=0)
scale = 1.0 / (head_size ** 0.5)
scale = 1.0 / (head_size**0.5)
out = ref_masked_attention(q, keys, values, scale)
out = out.view(num_heads, head_size)
output[i].copy_(out, non_blocking=True)
......@@ -74,7 +74,7 @@ def ref_multi_query_kv_attention(
dtype: torch.dtype,
) -> torch.Tensor:
head_size = query.shape[-1]
scale = 1.0 / (head_size ** 0.5)
scale = 1.0 / (head_size**0.5)
num_seqs = len(cu_seq_lens) - 1
ref_outputs = []
......@@ -84,8 +84,8 @@ def ref_multi_query_kv_attention(
seq_len = end_idx - start_idx
# Create attention mask.
attn_mask = torch.triu(
torch.ones(seq_len, seq_len, dtype=dtype), diagonal=1)
attn_mask = torch.triu(torch.ones(seq_len, seq_len, dtype=dtype),
diagonal=1)
attn_mask = attn_mask * torch.finfo(dtype).min
attn_mask = attn_mask.to(dtype=dtype, device='cuda')
......@@ -113,7 +113,7 @@ def ref_multi_query_cached_kv_attention(
num_heads = value_cache.shape[1]
head_size = value_cache.shape[2]
block_size = value_cache.shape[3]
scale = 1.0 / (head_size ** 0.5)
scale = 1.0 / (head_size**0.5)
num_queries = len(cu_query_lens) - 1
ref_outputs = []
......@@ -125,8 +125,8 @@ def ref_multi_query_cached_kv_attention(
block_table = block_tables[i]
# Create attention mask
attn_mask = torch.triu(
torch.ones(query_len, context_len), diagonal=context_len - query_len + 1) * -1e5
attn_mask = torch.triu(torch.ones(query_len, context_len),
diagonal=context_len - query_len + 1) * -1e5
attn_mask = attn_mask.to(dtype=dtype, device='cuda')
keys = []
......@@ -165,19 +165,25 @@ def run_single_query_cached_kv_attention(
num_blocks: int,
dtype: torch.dtype,
) -> None:
qkv = torch.empty(
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
qkv = torch.empty(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device='cuda')
qkv.uniform_(-1e-3, 1e-3)
query, _, _ = qkv.unbind(dim=1)
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_block_shape = (num_heads, head_size // x, block_size, x)
key_cache = torch.empty(
size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
key_cache = torch.empty(size=(num_blocks, *key_block_shape),
dtype=dtype,
device='cuda')
key_cache.uniform_(-1e-3, 1e-3)
value_block_shape = (num_heads, head_size, block_size)
value_cache = torch.empty(
size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')
value_cache = torch.empty(size=(num_blocks, *value_block_shape),
dtype=dtype,
device='cuda')
value_cache.uniform_(-1e-3, 1e-3)
context_lens = [random.randint(1, MAX_SEQ_LEN) for _ in range(num_tokens)]
......@@ -194,9 +200,12 @@ def run_single_query_cached_kv_attention(
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
scale = float(1.0 / (head_size ** 0.5))
output = torch.empty(
num_tokens, num_heads, head_size, dtype=dtype, device='cuda')
scale = float(1.0 / (head_size**0.5))
output = torch.empty(num_tokens,
num_heads,
head_size,
dtype=dtype,
device='cuda')
attention_ops.single_query_cached_kv_attention(
output,
query,
......@@ -235,9 +244,13 @@ def run_multi_query_kv_attention(
seq_lens = random.sample(range(1, MAX_SEQ_LEN), num_seqs)
num_tokens = sum(seq_lens)
scale = float(1.0 / (head_size ** 0.5))
qkv = torch.empty(
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
scale = float(1.0 / (head_size**0.5))
qkv = torch.empty(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device='cuda')
qkv.uniform_(-1e-3, 1e-3)
query, key, value = qkv.unbind(dim=1)
......
......@@ -26,8 +26,9 @@ def run_copy_blocks(
key_cache_shape = (num_blocks, num_heads, head_size // x, block_size, x)
key_caches = []
for _ in range(num_layers):
key_cache = torch.randn(
size=key_cache_shape, dtype=dtype, device='cuda')
key_cache = torch.randn(size=key_cache_shape,
dtype=dtype,
device='cuda')
key_caches.append(key_cache)
cloned_key_caches = []
for key_cache in key_caches:
......@@ -36,8 +37,9 @@ def run_copy_blocks(
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_caches = []
for _ in range(num_layers):
value_cache = torch.randn(
size=value_cache_shape, dtype=dtype, device='cuda')
value_cache = torch.randn(size=value_cache_shape,
dtype=dtype,
device='cuda')
value_caches.append(value_cache)
cloned_value_caches = []
for value_cache in value_caches:
......@@ -49,15 +51,18 @@ def run_copy_blocks(
# Reference implementation.
for src, dsts in block_mapping.items():
for dst in dsts:
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
for key_cache, cloned_key_cache in zip(key_caches,
cloned_key_caches):
cloned_key_cache[dst] = cloned_key_cache[src]
for value_cache, cloned_value_cache in zip(value_caches, cloned_value_caches):
for value_cache, cloned_value_cache in zip(value_caches,
cloned_value_caches):
cloned_value_cache[dst] = cloned_value_cache[src]
# Compare the results.
for key_cache, cloned_key_cache in zip(key_caches, cloned_key_caches):
assert torch.allclose(key_cache, cloned_key_cache)
for value_cache, cloned_value_cache in zip(value_caches, cloned_value_caches):
for value_cache, cloned_value_cache in zip(value_caches,
cloned_value_caches):
assert torch.allclose(value_cache, cloned_value_cache)
......@@ -74,8 +79,12 @@ def run_reshape_and_cache(
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int, device='cuda')
qkv = torch.randn(
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
qkv = torch.randn(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device='cuda')
_, key, value = qkv.unbind(dim=1)
x = 16 // torch.tensor([], dtype=dtype).element_size()
......@@ -84,15 +93,19 @@ def run_reshape_and_cache(
cloned_key_cache = key_cache.clone()
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_cache = torch.randn(
size=value_cache_shape, dtype=dtype, device='cuda')
value_cache = torch.randn(size=value_cache_shape,
dtype=dtype,
device='cuda')
cloned_value_cache = value_cache.clone()
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slot_mapping)
cache_ops.reshape_and_cache(key, value, key_cache, value_cache,
slot_mapping)
for i in range(num_tokens):
reshaped_key = key.reshape(num_tokens, num_heads, head_size // x, x)
block_idx = torch.div(slot_mapping[i], block_size, rounding_mode='floor')
block_idx = torch.div(slot_mapping[i],
block_size,
rounding_mode='floor')
block_offset = slot_mapping[i] % block_size
cloned_key_cache[block_idx, :, :, block_offset, :] = reshaped_key[i]
cloned_value_cache[block_idx, :, :, block_offset] = value[i]
......@@ -114,8 +127,12 @@ def run_gather_cached_kv(
slot_mapping = random.sample(range(num_slots), num_tokens)
slot_mapping = torch.tensor(slot_mapping, dtype=torch.int, device='cuda')
qkv = torch.randn(
num_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
qkv = torch.randn(num_tokens,
3,
num_heads,
head_size,
dtype=dtype,
device='cuda')
_, key, value = qkv.unbind(dim=1)
qkv_clone = qkv.clone()
......@@ -126,15 +143,20 @@ def run_gather_cached_kv(
key_cache = torch.randn(size=key_cache_shape, dtype=dtype, device='cuda')
value_cache_shape = (num_blocks, num_heads, head_size, block_size)
value_cache = torch.randn(
size=value_cache_shape, dtype=dtype, device='cuda')
value_cache = torch.randn(size=value_cache_shape,
dtype=dtype,
device='cuda')
cache_ops.gather_cached_kv(key, value, key_cache, value_cache, slot_mapping)
cache_ops.gather_cached_kv(key, value, key_cache, value_cache,
slot_mapping)
# Reference implementation.
for i in range(num_tokens):
reshaped_key = cloned_key.reshape(num_tokens, num_heads, head_size // x, x)
block_idx = torch.div(slot_mapping[i], block_size, rounding_mode='floor')
reshaped_key = cloned_key.reshape(num_tokens, num_heads,
head_size // x, x)
block_idx = torch.div(slot_mapping[i],
block_size,
rounding_mode='floor')
block_offset = slot_mapping[i] % block_size
reshaped_key[i] = key_cache[block_idx, :, :, block_offset, :]
cloned_value[i] = value_cache[block_idx, :, :, block_offset]
......@@ -145,20 +167,30 @@ def run_gather_cached_kv(
def test_copy_blocks() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
run_copy_blocks(
num_mappings=23, num_layers=7, num_heads=17, head_size=16,
block_size=8, num_blocks=1024, dtype=dtype)
run_copy_blocks(num_mappings=23,
num_layers=7,
num_heads=17,
head_size=16,
block_size=8,
num_blocks=1024,
dtype=dtype)
def test_reshape_and_cache() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
run_reshape_and_cache(
num_tokens=3, num_heads=2, head_size=16, block_size=8, num_blocks=2,
run_reshape_and_cache(num_tokens=3,
num_heads=2,
head_size=16,
block_size=8,
num_blocks=2,
dtype=dtype)
def test_gather_cached_kv() -> None:
for dtype in [torch.half, torch.bfloat16, torch.float]:
run_gather_cached_kv(
num_tokens=3, num_heads=2, head_size=16, block_size=8, num_blocks=2,
run_gather_cached_kv(num_tokens=3,
num_heads=2,
head_size=16,
block_size=8,
num_blocks=2,
dtype=dtype)
......@@ -14,8 +14,10 @@ class RefRMSNorm(nn.Module):
self.variance_epsilon = eps
def forward(self, hidden_states):
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
variance = hidden_states.to(torch.float32).pow(2).mean(-1,
keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance +
self.variance_epsilon)
if self.weight.dtype in [torch.half, torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
......
......@@ -8,8 +8,8 @@ from vllm import pos_encoding_ops
def rotate_half(x: torch.Tensor) -> torch.Tensor:
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
......@@ -38,7 +38,7 @@ class RefRotaryEmbeddingNeox(nn.Module):
self.max_position_embeddings = max_position_embeddings
# Create cos and sin embeddings.
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2) / dim))
inv_freq = 1.0 / (base**(torch.arange(0, dim, 2) / dim))
t = torch.arange(max_position_embeddings).float()
freqs = torch.einsum("i,j->ij", t, inv_freq.float())
emb = torch.cat((freqs, freqs), dim=-1)
......@@ -54,11 +54,10 @@ class RefRotaryEmbeddingNeox(nn.Module):
key: torch.Tensor, # [num_tokens, num_heads, head_size]
) -> Tuple[torch.Tensor, torch.Tensor]:
query_rot = query[..., : self.rotary_dim]
query_pass = query[..., self.rotary_dim :]
key_rot = key[..., : self.rotary_dim]
key_pass = key[..., self.rotary_dim :]
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
query_rot = query_rot.transpose(0, 1)
key_rot = key_rot.transpose(0, 1)
......@@ -85,12 +84,18 @@ def run_rotary_embedding_neox(
dtype: torch.dtype,
base: int = 10000,
) -> None:
positions = torch.randint(0, max_position, (num_tokens,), device='cuda')
query = torch.randn(num_tokens, num_heads * head_size, dtype=dtype, device='cuda')
key = torch.randn(num_tokens, num_heads * head_size, dtype=dtype, device='cuda')
positions = torch.randint(0, max_position, (num_tokens, ), device='cuda')
query = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device='cuda')
key = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device='cuda')
# Create the rotary embedding.
inv_freq = 1.0 / (base ** (torch.arange(0, rotary_dim, 2) / rotary_dim))
inv_freq = 1.0 / (base**(torch.arange(0, rotary_dim, 2) / rotary_dim))
t = torch.arange(max_position).float()
freqs = torch.einsum('i,j -> ij', t, inv_freq.float())
cos = freqs.cos()
......
"""vLLM: a high-throughput and memory-efficient inference engine for LLMs"""
from vllm.engine.arg_utils import AsyncEngineArgs, EngineArgs
from vllm.engine.async_llm_engine import AsyncLLMEngine
from vllm.engine.llm_engine import LLMEngine
......
......@@ -35,7 +35,8 @@ class LogicalTokenBlock:
def append_tokens(self, token_ids: List[int]) -> None:
assert len(token_ids) <= self.get_num_empty_slots()
self.token_ids[self.num_tokens:self.num_tokens + len(token_ids)] = token_ids
curr_idx = self.num_tokens
self.token_ids[curr_idx:curr_idx + len(token_ids)] = token_ids
self.num_tokens += len(token_ids)
def get_token_ids(self) -> List[int]:
......
......@@ -8,7 +8,7 @@ from vllm.utils import get_cpu_memory
logger = init_logger(__name__)
_GiB = 1 << 30
_GB = 1 << 30
class ModelConfig:
......@@ -106,6 +106,7 @@ class CacheConfig:
vLLM execution.
swap_space: Size of the CPU swap space per GPU (in GiB).
"""
def __init__(
self,
block_size: int,
......@@ -114,7 +115,7 @@ class CacheConfig:
) -> None:
self.block_size = block_size
self.gpu_memory_utilization = gpu_memory_utilization
self.swap_space_bytes = swap_space * _GiB
self.swap_space_bytes = swap_space * _GB
self._verify_args()
# Will be set after profiling.
......@@ -137,14 +138,13 @@ class CacheConfig:
num_gpus_per_node = parallel_config.tensor_parallel_size
cpu_memory_usage = self.swap_space_bytes * num_gpus_per_node
msg = (
f"{cpu_memory_usage / _GiB:.2f} GiB out of "
f"the {total_cpu_memory / _GiB:.2f} GiB total CPU memory is "
msg = (f"{cpu_memory_usage / _GB:.2f} GiB out of "
f"the {total_cpu_memory / _GB:.2f} GiB total CPU memory is "
"allocated for the swap space.")
if cpu_memory_usage > 0.7 * total_cpu_memory:
raise ValueError("Too large swap space. " + msg)
elif cpu_memory_usage > 0.4 * total_cpu_memory:
logger.warn("Possibly too large swap space. " + msg)
logger.warning("Possibly too large swap space. " + msg)
class ParallelConfig:
......@@ -157,6 +157,7 @@ class ParallelConfig:
True if either pipeline_parallel_size or tensor_parallel_size is
greater than 1.
"""
def __init__(
self,
pipeline_parallel_size: int,
......@@ -189,12 +190,9 @@ class SchedulerConfig:
max_seq_len: Maximum length of a sequence (including prompt
and generated text).
"""
def __init__(
self,
max_num_batched_tokens: int,
max_num_seqs: int,
max_seq_len: int
) -> None:
def __init__(self, max_num_batched_tokens: int, max_num_seqs: int,
max_seq_len: int) -> None:
self.max_num_batched_tokens = max_num_batched_tokens
self.max_num_seqs = max_num_seqs
self.max_seq_len = max_seq_len
......@@ -241,7 +239,7 @@ def _get_and_verify_dtype(
pass
else:
# Casting between float16 and bfloat16 is allowed with a warning.
logger.warn(f"Casting {config_dtype} to {torch_dtype}.")
logger.warning(f"Casting {config_dtype} to {torch_dtype}.")
# Check if the GPU supports the dtype.
if torch_dtype == torch.bfloat16:
......
......@@ -27,8 +27,9 @@ class BlockAllocator:
# Initialize the free blocks.
self.free_blocks: List[PhysicalTokenBlock] = []
for i in range(num_blocks):
block = PhysicalTokenBlock(
device=device, block_number=i, block_size=block_size)
block = PhysicalTokenBlock(device=device,
block_number=i,
block_size=block_size)
self.free_blocks.append(block)
def allocate(self) -> PhysicalTokenBlock:
......@@ -84,10 +85,12 @@ class BlockSpaceManager:
num_required_blocks = len(seq.logical_token_blocks)
num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()
# Use watermark to avoid frequent cache eviction.
return num_free_gpu_blocks - num_required_blocks >= self.watermark_blocks
return (num_free_gpu_blocks - num_required_blocks >=
self.watermark_blocks)
def allocate(self, seq_group: SequenceGroup) -> None:
# NOTE: Here we assume that all sequences in the group have the same prompt.
# NOTE: Here we assume that all sequences in the group have the same
# prompt.
seq = seq_group.get_seqs()[0]
# Allocate new physical token blocks that will store the prompt tokens.
......@@ -143,7 +146,8 @@ class BlockSpaceManager:
for block in src_block_table:
block.ref_count += 1
def _get_physical_blocks(self, seq_group: SequenceGroup) -> List[PhysicalTokenBlock]:
def _get_physical_blocks(
self, seq_group: SequenceGroup) -> List[PhysicalTokenBlock]:
# NOTE: Here, we assume that the physical blocks are only shared by
# the sequences in the same group.
blocks: Set[PhysicalTokenBlock] = set()
......
......@@ -43,8 +43,7 @@ class SchedulerOutputs:
assert not (blocks_to_swap_in and blocks_to_swap_out)
def is_empty(self) -> bool:
return (not self.blocks_to_swap_in
and not self.blocks_to_swap_out
return (not self.blocks_to_swap_in and not self.blocks_to_swap_out
and not self.blocks_to_copy)
......@@ -61,7 +60,7 @@ class Scheduler:
self.log_stats = log_stats
# Instantiate the scheduling policy.
self.policy = PolicyFactory.get_policy(policy_name='fcfs')
self.policy = PolicyFactory.get_policy(policy_name="fcfs")
# Create the block space manager.
self.block_manager = BlockSpaceManager(
block_size=self.cache_config.block_size,
......@@ -102,7 +101,8 @@ class Scheduler:
def get_num_unfinished_seq_groups(self) -> int:
return len(self.waiting) + len(self.running) + len(self.swapped)
def _schedule(self) -> Tuple[SchedulerOutputs, List[str], List[SequenceGroup]]:
def _schedule(
self) -> Tuple[SchedulerOutputs, List[str], List[SequenceGroup]]:
# Blocks that need to be swaped or copied before model execution.
blocks_to_swap_in: Dict[int, int] = {}
blocks_to_swap_out: Dict[int, int] = {}
......@@ -160,7 +160,8 @@ class Scheduler:
num_curr_seqs = sum(
seq_group.num_seqs(status=SequenceStatus.RUNNING)
for seq_group in self.running)
if num_curr_seqs + num_new_seqs > self.scheduler_config.max_num_seqs:
if (num_curr_seqs + num_new_seqs >
self.scheduler_config.max_num_seqs):
break
seq_group = self.swapped.pop(0)
......@@ -170,8 +171,7 @@ class Scheduler:
num_batched_tokens = sum(
seq_group.num_seqs(status=SequenceStatus.RUNNING)
for seq_group in self.running
)
for seq_group in self.running)
# Join waiting sequences if possible.
prompt_group_ids: List[str] = []
......@@ -191,7 +191,7 @@ class Scheduler:
num_prompt_tokens = seq_group.get_seqs()[0].get_len()
if num_prompt_tokens >= self.scheduler_config.max_seq_len:
logger.warn(
logger.warning(
f"Input prompt ({num_prompt_tokens} tokens) is too long"
" and exceeds limit of "
f"{self.scheduler_config.max_seq_len}")
......@@ -206,17 +206,19 @@ class Scheduler:
break
# If the number of batched tokens exceeds the limit, stop.
if (num_batched_tokens + num_prompt_tokens
> self.scheduler_config.max_num_batched_tokens):
if (num_batched_tokens + num_prompt_tokens >
self.scheduler_config.max_num_batched_tokens):
break
# The total number of sequences in the RUNNING state should not
# exceed the maximum number of sequences.
num_new_seqs = seq_group.num_seqs(status=SequenceStatus.WAITING)
num_new_seqs = seq_group.num_seqs(
status=SequenceStatus.WAITING)
num_curr_seqs = sum(
seq_group.num_seqs(status=SequenceStatus.RUNNING)
for seq_group in self.running)
if num_curr_seqs + num_new_seqs > self.scheduler_config.max_num_seqs:
if (num_curr_seqs + num_new_seqs >
self.scheduler_config.max_num_seqs):
break
seq_group = self.waiting.pop(0)
......@@ -240,12 +242,11 @@ class Scheduler:
elapsed_time = now - self.last_logging_time
if elapsed_time > _LOGGING_INTERVAL_SEC:
self.last_logging_time = now
self.num_input_tokens = [
(t, n) for t, n in self.num_input_tokens
if now - t < _LOGGING_INTERVAL_SEC
]
self.num_input_tokens = [(t, n) for t, n in self.num_input_tokens
if now - t < _LOGGING_INTERVAL_SEC]
if len(self.num_input_tokens) > 1:
total_num_tokens = sum(n for _, n in self.num_input_tokens[:-1])
total_num_tokens = sum(n
for _, n in self.num_input_tokens[:-1])
window = now - self.num_input_tokens[0][0]
avg_throughput = total_num_tokens / window
else:
......@@ -258,14 +259,14 @@ class Scheduler:
total_num_cpu_blocks = self.cache_config.num_cpu_blocks
if total_num_cpu_blocks > 0:
num_free_cpu_blocks = self.block_manager.get_num_free_cpu_blocks()
num_free_cpu_blocks = (
self.block_manager.get_num_free_cpu_blocks())
num_used_cpu_blocks = total_num_cpu_blocks - num_free_cpu_blocks
cpu_cache_usage = num_used_cpu_blocks / total_num_cpu_blocks
else:
cpu_cache_usage = 0.0
logger.info(
f"Throughput: {avg_throughput:.1f} tokens/s, "
logger.info(f"Throughput: {avg_throughput:.1f} tokens/s, "
f"Running: {len(self.running)} reqs, "
f"Swapped: {len(self.swapped)} reqs, "
f"Pending: {len(self.waiting)} reqs, "
......@@ -273,11 +274,15 @@ class Scheduler:
f"CPU KV cache usage: {cpu_cache_usage * 100:.1f}%")
return scheduler_outputs, prompt_group_ids, ignored_seq_groups
def schedule(self) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs, List[SequenceGroup]]:
def schedule(
self
) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs,
List[SequenceGroup]]:
# Schedule sequence groups.
# This function call changes the internal states of the scheduler
# such as self.running, self.swapped, and self.waiting.
scheduler_outputs, prompt_group_ids, ignored_seq_groups = self._schedule()
(scheduler_outputs, prompt_group_ids,
ignored_seq_groups) = self._schedule()
# Create input data structures.
seq_group_metadata_list: List[SequenceGroupMetadata] = []
......@@ -311,8 +316,8 @@ class Scheduler:
for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
output = seq_outputs[seq.seq_id]
if seq.seq_id != output.parent_seq_id:
# The sequence is a fork of the parent sequence (beam search).
# Free the current sequence.
# The sequence is a fork of the parent sequence (beam
# search). Free the current sequence.
self.block_manager.free(seq)
# Fork the parent sequence.
parent_seq = seq_group.find(output.parent_seq_id)
......@@ -385,7 +390,7 @@ class Scheduler:
elif preemption_mode == PreemptionMode.SWAP:
self._preempt_by_swap(seq_group, blocks_to_swap_out)
else:
assert False, 'Invalid preemption mode.'
assert False, "Invalid preemption mode."
def _preempt_by_recompute(
self,
......
......@@ -12,11 +12,11 @@ class EngineArgs:
"""Arguments for vLLM engine."""
model: str
tokenizer: Optional[str] = None
tokenizer_mode: str = "auto"
tokenizer_mode: str = 'auto'
download_dir: Optional[str] = None
use_np_weights: bool = False
use_dummy_weights: bool = False
dtype: str = "auto"
dtype: str = 'auto'
seed: int = 0
worker_use_ray: bool = False
pipeline_parallel_size: int = 1
......@@ -35,76 +35,101 @@ class EngineArgs:
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser,
) -> argparse.ArgumentParser:
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
"""Shared CLI arguments for vLLM engine."""
# Model arguments
parser.add_argument('--model', type=str, default='facebook/opt-125m',
parser.add_argument(
'--model',
type=str,
default='facebook/opt-125m',
help='name or path of the huggingface model to use')
parser.add_argument('--tokenizer', type=str, default=EngineArgs.tokenizer,
parser.add_argument(
'--tokenizer',
type=str,
default=EngineArgs.tokenizer,
help='name or path of the huggingface tokenizer to use')
parser.add_argument('--tokenizer-mode', type=str,
parser.add_argument('--tokenizer-mode',
type=str,
default=EngineArgs.tokenizer_mode,
choices=['auto', 'slow'],
help='tokenizer mode. "auto" will use the fast '
'tokenizer if available, and "slow" will '
'always use the slow tokenizer.')
parser.add_argument('--download-dir', type=str,
parser.add_argument('--download-dir',
type=str,
default=EngineArgs.download_dir,
help='directory to download and load the weights, '
'default to the default cache dir of '
'huggingface')
parser.add_argument('--use-np-weights', action='store_true',
parser.add_argument('--use-np-weights',
action='store_true',
help='save a numpy copy of model weights for '
'faster loading. This can increase the disk '
'usage by up to 2x.')
parser.add_argument('--use-dummy-weights', action='store_true',
parser.add_argument('--use-dummy-weights',
action='store_true',
help='use dummy values for model weights')
# TODO(woosuk): Support FP32.
parser.add_argument('--dtype', type=str, default=EngineArgs.dtype,
parser.add_argument(
'--dtype',
type=str,
default=EngineArgs.dtype,
choices=['auto', 'half', 'bfloat16', 'float'],
help='data type for model weights and activations. '
'The "auto" option will use FP16 precision '
'for FP32 and FP16 models, and BF16 precision '
'for BF16 models.')
# Parallel arguments
parser.add_argument('--worker-use-ray', action='store_true',
parser.add_argument('--worker-use-ray',
action='store_true',
help='use Ray for distributed serving, will be '
'automatically set when using more than 1 GPU')
parser.add_argument('--pipeline-parallel-size', '-pp', type=int,
parser.add_argument('--pipeline-parallel-size',
'-pp',
type=int,
default=EngineArgs.pipeline_parallel_size,
help='number of pipeline stages')
parser.add_argument('--tensor-parallel-size', '-tp', type=int,
parser.add_argument('--tensor-parallel-size',
'-tp',
type=int,
default=EngineArgs.tensor_parallel_size,
help='number of tensor parallel replicas')
# KV cache arguments
parser.add_argument('--block-size', type=int,
parser.add_argument('--block-size',
type=int,
default=EngineArgs.block_size,
choices=[8, 16, 32],
help='token block size')
# TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
parser.add_argument('--seed', type=int, default=EngineArgs.seed,
parser.add_argument('--seed',
type=int,
default=EngineArgs.seed,
help='random seed')
parser.add_argument('--swap-space', type=int,
parser.add_argument('--swap-space',
type=int,
default=EngineArgs.swap_space,
help='CPU swap space size (GiB) per GPU')
parser.add_argument('--gpu-memory-utilization', type=float,
parser.add_argument('--gpu-memory-utilization',
type=float,
default=EngineArgs.gpu_memory_utilization,
help='the percentage of GPU memory to be used for'
'the model executor')
parser.add_argument('--max-num-batched-tokens', type=int,
parser.add_argument('--max-num-batched-tokens',
type=int,
default=EngineArgs.max_num_batched_tokens,
help='maximum number of batched tokens per '
'iteration')
parser.add_argument('--max-num-seqs', type=int,
parser.add_argument('--max-num-seqs',
type=int,
default=EngineArgs.max_num_seqs,
help='maximum number of sequences per iteration')
parser.add_argument('--disable-log-stats', action='store_true',
parser.add_argument('--disable-log-stats',
action='store_true',
help='disable logging statistics')
return parser
@classmethod
def from_cli_args(cls, args: argparse.Namespace) -> "EngineArgs":
def from_cli_args(cls, args: argparse.Namespace) -> 'EngineArgs':
# Get the list of attributes of this dataclass.
attrs = [attr.name for attr in dataclasses.fields(cls)]
# Set the attributes from the parsed arguments.
......@@ -115,18 +140,19 @@ class EngineArgs:
self,
) -> Tuple[ModelConfig, CacheConfig, ParallelConfig, SchedulerConfig]:
# Initialize the configs.
model_config = ModelConfig(
self.model, self.tokenizer, self.tokenizer_mode, self.download_dir,
self.use_np_weights, self.use_dummy_weights, self.dtype, self.seed)
cache_config = CacheConfig(self.block_size, self.gpu_memory_utilization,
model_config = ModelConfig(self.model, self.tokenizer,
self.tokenizer_mode, self.download_dir,
self.use_np_weights, self.use_dummy_weights,
self.dtype, self.seed)
cache_config = CacheConfig(self.block_size,
self.gpu_memory_utilization,
self.swap_space)
parallel_config = ParallelConfig(self.pipeline_parallel_size,
self.tensor_parallel_size,
self.worker_use_ray)
max_seq_len = min(
self.max_num_batched_tokens,
getattr(model_config.hf_config, "max_position_embeddings",
float("inf")))
model_max_len = getattr(model_config.hf_config,
'max_position_embeddings', float('inf'))
max_seq_len = min(self.max_num_batched_tokens, model_max_len)
scheduler_config = SchedulerConfig(self.max_num_batched_tokens,
self.max_num_seqs, max_seq_len)
return model_config, cache_config, parallel_config, scheduler_config
......@@ -140,12 +166,13 @@ class AsyncEngineArgs(EngineArgs):
@staticmethod
def add_cli_args(
parser: argparse.ArgumentParser,
) -> argparse.ArgumentParser:
parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser = EngineArgs.add_cli_args(parser)
parser.add_argument('--engine-use-ray', action='store_true',
parser.add_argument('--engine-use-ray',
action='store_true',
help='use Ray to start the LLM engine in a '
'separate process as the server process.')
parser.add_argument('--disable-log-requests', action='store_true',
parser.add_argument('--disable-log-requests',
action='store_true',
help='disable logging requests')
return parser
......@@ -35,8 +35,13 @@ class AsyncLLMEngine:
log_requests: Whether to log the requests.
*args, *kwargs: Arguments for LLMEngine.
"""
def __init__(self, worker_use_ray: bool, engine_use_ray: bool,
log_requests: bool = True, *args, **kwargs) -> None:
def __init__(self,
worker_use_ray: bool,
engine_use_ray: bool,
*args,
log_requests: bool = True,
**kwargs) -> None:
self.worker_use_ray = worker_use_ray
self.engine_use_ray = engine_use_ray
self.log_requests = log_requests
......@@ -80,8 +85,7 @@ class AsyncLLMEngine:
prompt: Optional[str],
sampling_params: SamplingParams,
request_id: str,
prompt_token_ids: Optional[List[int]] = None
) -> RequestOutput:
prompt_token_ids: Optional[List[int]] = None) -> RequestOutput:
"""Generate outputs for a request.
Generate outputs for a request. This method is a coroutine. It adds the
......@@ -117,12 +121,15 @@ class AsyncLLMEngine:
# Add the request into the vLLM engine's waiting queue.
if self.engine_use_ray:
await self.engine.add_request.remote(
request_id, prompt, sampling_params,
request_id,
prompt,
sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time)
else:
self.engine.add_request(
request_id, prompt, sampling_params,
self.engine.add_request(request_id,
prompt,
sampling_params,
prompt_token_ids=prompt_token_ids,
arrival_time=arrival_time)
......@@ -200,7 +207,8 @@ class AsyncLLMEngine:
self.kicking_request_id = None
@classmethod
def from_engine_args(cls, engine_args: AsyncEngineArgs) -> "AsyncLLMEngine":
def from_engine_args(cls,
engine_args: AsyncEngineArgs) -> "AsyncLLMEngine":
"""Creates an async LLM engine from the engine arguments."""
# Create the engine configs.
engine_configs = engine_args.create_engine_configs()
......@@ -211,8 +219,9 @@ class AsyncLLMEngine:
# Create the async LLM engine.
engine = cls(engine_args.worker_use_ray,
engine_args.engine_use_ray,
not engine_args.disable_log_requests,
*engine_configs,
distributed_init_method, devices,
distributed_init_method,
devices,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats)
return engine
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment