Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
cd9e60c7
Unverified
Commit
cd9e60c7
authored
Feb 02, 2024
by
Fengzhe Zhou
Committed by
GitHub
Feb 01, 2024
Browse files
Add Internlm2 (#2666)
parent
93b38bea
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
330 additions
and
0 deletions
+330
-0
README.md
README.md
+1
-0
docs/source/models/supported_models.rst
docs/source/models/supported_models.rst
+3
-0
vllm/model_executor/models/__init__.py
vllm/model_executor/models/__init__.py
+1
-0
vllm/model_executor/models/internlm2.py
vllm/model_executor/models/internlm2.py
+325
-0
No files found.
README.md
View file @
cd9e60c7
...
...
@@ -73,6 +73,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
-
GPT-J (
`EleutherAI/gpt-j-6b`
,
`nomic-ai/gpt4all-j`
, etc.)
-
GPT-NeoX (
`EleutherAI/gpt-neox-20b`
,
`databricks/dolly-v2-12b`
,
`stabilityai/stablelm-tuned-alpha-7b`
, etc.)
-
InternLM (
`internlm/internlm-7b`
,
`internlm/internlm-chat-7b`
, etc.)
-
InternLM2 (
`internlm/internlm2-7b`
,
`internlm/internlm2-chat-7b`
, etc.)
-
LLaMA & LLaMA-2 (
`meta-llama/Llama-2-70b-hf`
,
`lmsys/vicuna-13b-v1.3`
,
`young-geng/koala`
,
`openlm-research/open_llama_13b`
, etc.)
-
Mistral (
`mistralai/Mistral-7B-v0.1`
,
`mistralai/Mistral-7B-Instruct-v0.1`
, etc.)
-
Mixtral (
`mistralai/Mixtral-8x7B-v0.1`
,
`mistralai/Mixtral-8x7B-Instruct-v0.1`
, etc.)
...
...
docs/source/models/supported_models.rst
View file @
cd9e60c7
...
...
@@ -47,6 +47,9 @@ Alongside each architecture, we include some popular models that use it.
* - :code:`InternLMForCausalLM`
- InternLM
- :code:`internlm/internlm-7b`, :code:`internlm/internlm-chat-7b`, etc.
* - :code:`InternLM2ForCausalLM`
- InternLM2
- :code:`internlm/internlm2-7b`, :code:`internlm/internlm2-chat-7b`, etc.
* - :code:`LlamaForCausalLM`
- LLaMA, LLaMA-2, Vicuna, Alpaca, Koala, Guanaco
- :code:`meta-llama/Llama-2-13b-hf`, :code:`meta-llama/Llama-2-70b-hf`, :code:`openlm-research/open_llama_13b`, :code:`lmsys/vicuna-13b-v1.3`, :code:`young-geng/koala`, etc.
...
...
vllm/model_executor/models/__init__.py
View file @
cd9e60c7
...
...
@@ -25,6 +25,7 @@ _MODELS = {
"GPTJForCausalLM"
:
(
"gpt_j"
,
"GPTJForCausalLM"
),
"GPTNeoXForCausalLM"
:
(
"gpt_neox"
,
"GPTNeoXForCausalLM"
),
"InternLMForCausalLM"
:
(
"internlm"
,
"InternLMForCausalLM"
),
"InternLM2ForCausalLM"
:
(
"internlm2"
,
"InternLM2ForCausalLM"
),
"LlamaForCausalLM"
:
(
"llama"
,
"LlamaForCausalLM"
),
# For decapoda-research/llama-*
"LLaMAForCausalLM"
:
(
"llama"
,
"LlamaForCausalLM"
),
...
...
vllm/model_executor/models/internlm2.py
0 → 100644
View file @
cd9e60c7
# -*- coding: utf-8 -*-
from
typing
import
Any
,
Dict
,
List
,
Optional
,
Tuple
import
torch
from
torch
import
nn
from
transformers
import
PretrainedConfig
from
vllm.model_executor.input_metadata
import
InputMetadata
from
vllm.model_executor.layers.activation
import
SiluAndMul
from
vllm.model_executor.layers.attention
import
PagedAttention
from
vllm.model_executor.layers.layernorm
import
RMSNorm
from
vllm.model_executor.layers.linear
import
(
LinearMethodBase
,
MergedColumnParallelLinear
,
QKVParallelLinear
,
RowParallelLinear
)
from
vllm.model_executor.layers.rotary_embedding
import
get_rope
from
vllm.model_executor.layers.sampler
import
Sampler
from
vllm.model_executor.layers.vocab_parallel_embedding
import
(
VocabParallelEmbedding
,
ParallelLMHead
)
from
vllm.model_executor.parallel_utils.parallel_state
import
(
get_tensor_model_parallel_world_size
)
from
vllm.model_executor.sampling_metadata
import
SamplingMetadata
from
vllm.model_executor.weight_utils
import
(
default_weight_loader
,
hf_model_weights_iterator
)
from
vllm.sequence
import
SamplerOutput
KVCache
=
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]
class
InternLM2MLP
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
:
int
,
intermediate_size
:
int
,
hidden_act
:
str
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
gate_up_proj
=
MergedColumnParallelLinear
(
hidden_size
,
[
intermediate_size
]
*
2
,
bias
=
False
,
linear_method
=
linear_method
)
self
.
w2
=
RowParallelLinear
(
intermediate_size
,
hidden_size
,
bias
=
False
,
linear_method
=
linear_method
)
if
hidden_act
!=
"silu"
:
raise
ValueError
(
f
"Unsupported activation:
{
hidden_act
}
. "
"Only silu is supported for now."
)
self
.
act_fn
=
SiluAndMul
()
def
forward
(
self
,
x
):
gate_up
,
_
=
self
.
gate_up_proj
(
x
)
x
=
self
.
act_fn
(
gate_up
)
x
,
_
=
self
.
w2
(
x
)
return
x
class
InternLM2Attention
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
:
int
,
num_heads
:
int
,
num_kv_heads
:
int
,
rope_theta
:
float
=
10000
,
rope_scaling
:
Optional
[
Dict
[
str
,
Any
]]
=
None
,
max_position_embeddings
:
int
=
8192
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
hidden_size
=
hidden_size
tp_size
=
get_tensor_model_parallel_world_size
()
self
.
total_num_heads
=
num_heads
assert
self
.
total_num_heads
%
tp_size
==
0
self
.
num_heads
=
self
.
total_num_heads
//
tp_size
self
.
total_num_kv_heads
=
num_kv_heads
if
self
.
total_num_kv_heads
>=
tp_size
:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert
self
.
total_num_kv_heads
%
tp_size
==
0
else
:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert
tp_size
%
self
.
total_num_kv_heads
==
0
self
.
num_kv_heads
=
max
(
1
,
self
.
total_num_kv_heads
//
tp_size
)
self
.
head_dim
=
hidden_size
//
self
.
total_num_heads
self
.
q_size
=
self
.
num_heads
*
self
.
head_dim
self
.
kv_size
=
self
.
num_kv_heads
*
self
.
head_dim
self
.
scaling
=
self
.
head_dim
**-
0.5
self
.
rope_theta
=
rope_theta
self
.
max_position_embeddings
=
max_position_embeddings
self
.
wqkv
=
QKVParallelLinear
(
hidden_size
,
self
.
head_dim
,
self
.
total_num_heads
,
self
.
total_num_kv_heads
,
bias
=
False
,
linear_method
=
linear_method
,
)
self
.
wo
=
RowParallelLinear
(
self
.
total_num_heads
*
self
.
head_dim
,
hidden_size
,
bias
=
False
,
linear_method
=
linear_method
,
)
self
.
rotary_emb
=
get_rope
(
self
.
head_dim
,
rotary_dim
=
self
.
head_dim
,
max_position
=
max_position_embeddings
,
base
=
rope_theta
,
rope_scaling
=
rope_scaling
,
)
self
.
attn
=
PagedAttention
(
self
.
num_heads
,
self
.
head_dim
,
self
.
scaling
,
num_kv_heads
=
self
.
num_kv_heads
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
qkv
,
_
=
self
.
wqkv
(
hidden_states
)
q
,
k
,
v
=
qkv
.
split
([
self
.
q_size
,
self
.
kv_size
,
self
.
kv_size
],
dim
=-
1
)
q
,
k
=
self
.
rotary_emb
(
positions
,
q
,
k
)
k_cache
,
v_cache
=
kv_cache
attn_output
=
self
.
attn
(
q
,
k
,
v
,
k_cache
,
v_cache
,
input_metadata
)
output
,
_
=
self
.
wo
(
attn_output
)
return
output
class
InternLMDecoderLayer
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
hidden_size
=
config
.
hidden_size
rope_theta
=
getattr
(
config
,
"rope_theta"
,
10000
)
rope_scaling
=
getattr
(
config
,
"rope_scaling"
,
None
)
max_position_embeddings
=
getattr
(
config
,
"max_position_embeddings"
,
8192
)
self
.
attention
=
InternLM2Attention
(
hidden_size
=
self
.
hidden_size
,
num_heads
=
config
.
num_attention_heads
,
num_kv_heads
=
config
.
num_key_value_heads
,
rope_theta
=
rope_theta
,
rope_scaling
=
rope_scaling
,
max_position_embeddings
=
max_position_embeddings
,
linear_method
=
linear_method
,
)
self
.
feed_forward
=
InternLM2MLP
(
hidden_size
=
self
.
hidden_size
,
intermediate_size
=
config
.
intermediate_size
,
hidden_act
=
config
.
hidden_act
,
linear_method
=
linear_method
,
)
self
.
attention_norm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
self
.
ffn_norm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
positions
:
torch
.
Tensor
,
hidden_states
:
torch
.
Tensor
,
kv_cache
:
KVCache
,
input_metadata
:
InputMetadata
,
residual
:
Optional
[
torch
.
Tensor
],
)
->
Tuple
[
torch
.
Tensor
,
torch
.
Tensor
]:
# Self Attention
if
residual
is
None
:
residual
=
hidden_states
hidden_states
=
self
.
attention_norm
(
hidden_states
)
else
:
hidden_states
,
residual
=
self
.
attention_norm
(
hidden_states
,
residual
)
hidden_states
=
self
.
attention
(
positions
=
positions
,
hidden_states
=
hidden_states
,
kv_cache
=
kv_cache
,
input_metadata
=
input_metadata
,
)
# Fully Connected
hidden_states
,
residual
=
self
.
ffn_norm
(
hidden_states
,
residual
)
hidden_states
=
self
.
feed_forward
(
hidden_states
)
return
hidden_states
,
residual
class
InternLM2Model
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
config
=
config
self
.
padding_idx
=
config
.
pad_token_id
self
.
vocab_size
=
config
.
vocab_size
self
.
tok_embeddings
=
VocabParallelEmbedding
(
config
.
vocab_size
,
config
.
hidden_size
,
)
self
.
layers
=
nn
.
ModuleList
([
InternLMDecoderLayer
(
config
,
linear_method
)
for
_
in
range
(
config
.
num_hidden_layers
)
])
self
.
norm
=
RMSNorm
(
config
.
hidden_size
,
eps
=
config
.
rms_norm_eps
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
hidden_states
=
self
.
tok_embeddings
(
input_ids
)
residual
=
None
for
i
in
range
(
len
(
self
.
layers
)):
layer
=
self
.
layers
[
i
]
hidden_states
,
residual
=
layer
(
positions
,
hidden_states
,
kv_caches
[
i
],
input_metadata
,
residual
,
)
hidden_states
,
_
=
self
.
norm
(
hidden_states
,
residual
)
return
hidden_states
class
InternLM2ForCausalLM
(
nn
.
Module
):
def
__init__
(
self
,
config
:
PretrainedConfig
,
linear_method
:
Optional
[
LinearMethodBase
]
=
None
,
)
->
None
:
super
().
__init__
()
self
.
config
=
config
self
.
linear_method
=
linear_method
self
.
model
=
InternLM2Model
(
config
,
linear_method
)
self
.
output
=
ParallelLMHead
(
config
.
vocab_size
,
config
.
hidden_size
)
self
.
sampler
=
Sampler
(
config
.
vocab_size
)
def
forward
(
self
,
input_ids
:
torch
.
Tensor
,
positions
:
torch
.
Tensor
,
kv_caches
:
List
[
KVCache
],
input_metadata
:
InputMetadata
,
)
->
torch
.
Tensor
:
hidden_states
=
self
.
model
(
input_ids
,
positions
,
kv_caches
,
input_metadata
)
return
hidden_states
def
sample
(
self
,
hidden_states
:
torch
.
Tensor
,
sampling_metadata
:
SamplingMetadata
,
)
->
Optional
[
SamplerOutput
]:
next_tokens
=
self
.
sampler
(
self
.
output
.
weight
,
hidden_states
,
sampling_metadata
)
return
next_tokens
def
load_weights
(
self
,
model_name_or_path
:
str
,
cache_dir
:
Optional
[
str
]
=
None
,
load_format
:
str
=
"auto"
,
revision
:
Optional
[
str
]
=
None
):
stacked_params_mapping
=
[
# (param_name, shard_name, shard_id)
(
"gate_up_proj"
,
"w1"
,
0
),
(
"gate_up_proj"
,
"w3"
,
1
),
]
params_dict
=
dict
(
self
.
named_parameters
())
for
name
,
loaded_weight
in
hf_model_weights_iterator
(
model_name_or_path
,
cache_dir
,
load_format
,
revision
):
if
"rotary_emb.inv_freq"
in
name
:
continue
for
(
param_name
,
weight_name
,
shard_id
)
in
stacked_params_mapping
:
if
weight_name
not
in
name
:
continue
name
=
name
.
replace
(
weight_name
,
param_name
)
# Skip loading extra bias for GPTQ models.
if
name
.
endswith
(
".bias"
)
and
name
not
in
params_dict
:
continue
param
=
params_dict
[
name
]
weight_loader
=
param
.
weight_loader
weight_loader
(
param
,
loaded_weight
,
shard_id
)
break
else
:
# Skip loading extra bias for GPTQ models.
if
name
.
endswith
(
".bias"
)
and
name
not
in
params_dict
:
continue
param
=
params_dict
[
name
]
if
"wqkv"
in
name
:
config
=
self
.
config
kv_groups
=
config
.
num_attention_heads
//
config
.
num_key_value_heads
head_dim
=
config
.
hidden_size
//
config
.
num_attention_heads
loaded_weight
=
loaded_weight
.
view
(
-
1
,
2
+
kv_groups
,
head_dim
,
loaded_weight
.
shape
[
-
1
])
wq
,
wk
,
wv
=
torch
.
split
(
loaded_weight
,
[
kv_groups
,
1
,
1
],
dim
=
1
)
wq
=
wq
.
reshape
(
-
1
,
wq
.
shape
[
-
1
])
wk
=
wk
.
reshape
(
-
1
,
wk
.
shape
[
-
1
])
wv
=
wv
.
reshape
(
-
1
,
wv
.
shape
[
-
1
])
weight_loader
=
param
.
weight_loader
weight_loader
(
param
,
wq
,
'q'
)
weight_loader
(
param
,
wk
,
'k'
)
weight_loader
(
param
,
wv
,
'v'
)
else
:
weight_loader
=
getattr
(
param
,
"weight_loader"
,
default_weight_loader
)
weight_loader
(
param
,
loaded_weight
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment