Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
b9cecc26
Unverified
Commit
b9cecc26
authored
Sep 10, 2023
by
Woosuk Kwon
Committed by
GitHub
Sep 10, 2023
Browse files
[Docs] Update installation page (#1005)
parent
898285c9
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
11 additions
and
19 deletions
+11
-19
docs/source/getting_started/installation.rst
docs/source/getting_started/installation.rst
+11
-19
No files found.
docs/source/getting_started/installation.rst
View file @
b9cecc26
...
...
@@ -3,31 +3,15 @@
Installation
============
vLLM is a Python library that also contains some C++ and CUDA code.
This additional code requires compilation on the user's machine.
vLLM is a Python library that also contains pre-compiled C++ and CUDA (11.8) binaries.
Requirements
------------
* OS: Linux
* Python: 3.8 or higher
* CUDA: 11.0 -- 11.8
* Python: 3.8 -- 3.11
* GPU: compute capability 7.0 or higher (e.g., V100, T4, RTX20xx, A100, L4, etc.)
.. note::
As of now, vLLM does not support CUDA 12.
If you are using Hopper or Lovelace GPUs, please use CUDA 11.8 instead of CUDA 12.
.. tip::
If you have trouble installing vLLM, we recommend using the NVIDIA PyTorch Docker image.
.. code-block:: console
$ # Pull the Docker image with CUDA 11.8.
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
Inside the Docker container, please execute :code:`pip uninstall torch` before installing vLLM.
Install with pip
----------------
...
...
@@ -40,7 +24,7 @@ You can install vLLM using pip:
$ conda activate myenv
$ # Install vLLM.
$ pip install vllm
# This may take 5-10 minutes.
$ pip install vllm
.. _build_from_source:
...
...
@@ -55,3 +39,11 @@ You can also build and install vLLM from source:
$ git clone https://github.com/vllm-project/vllm.git
$ cd vllm
$ pip install -e . # This may take 5-10 minutes.
.. tip::
If you have trouble building vLLM, we recommend using the NVIDIA PyTorch Docker image.
.. code-block:: console
$ # Pull the Docker image with CUDA 11.8.
$ docker run --gpus all -it --rm --shm-size=8g nvcr.io/nvidia/pytorch:22.12-py3
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment