Unverified Commit 9925c179 authored by Antoni Baum's avatar Antoni Baum Committed by GitHub
Browse files

Ray placement group support (#397)

parent 8c4b2592
ninja # For faster builds.
psutil
ray
ray >= 2.5.1
sentencepiece # Required for LLaMA tokenizer.
numpy
torch >= 2.0.0
......
......@@ -226,14 +226,14 @@ class AsyncLLMEngine:
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
distributed_init_method, devices = initialize_cluster(
distributed_init_method, placement_group = initialize_cluster(
parallel_config, engine_args.engine_use_ray)
# Create the async LLM engine.
engine = cls(engine_args.worker_use_ray,
engine_args.engine_use_ray,
*engine_configs,
distributed_init_method,
devices,
placement_group,
log_requests=not engine_args.disable_log_requests,
log_stats=not engine_args.disable_log_stats)
return engine
import time
from typing import Any, List, Optional
from functools import partial
from typing import Any, List, Optional, TYPE_CHECKING
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
from vllm.core.scheduler import Scheduler
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.ray_utils import DeviceID, initialize_cluster, ray
from vllm.engine.ray_utils import initialize_cluster, ray, RayWorker
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
......@@ -13,7 +14,13 @@ from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
get_tokenizer)
from vllm.utils import Counter
from vllm.worker.worker import Worker
if ray:
from ray.air.util.torch_dist import init_torch_dist_process_group
from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
logger = init_logger(__name__)
......@@ -54,7 +61,7 @@ class LLMEngine:
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
distributed_init_method: str,
stage_devices: List[List[DeviceID]],
placement_group: Optional["PlacementGroup"],
log_stats: bool,
) -> None:
logger.info(
......@@ -85,31 +92,73 @@ class LLMEngine:
self.seq_counter = Counter()
# Create the parallel GPU workers.
self.workers: List[Worker] = []
assert len(stage_devices) == 1, "Only support one stage for now."
for rank, node_resource, _ in stage_devices[0]:
worker_cls = Worker
if self.parallel_config.worker_use_ray:
worker_cls = ray.remote(
num_cpus=0,
num_gpus=1,
resources={node_resource: 1e-3},
)(worker_cls).remote
worker = worker_cls(
model_config,
parallel_config,
scheduler_config,
rank,
distributed_init_method,
)
self.workers.append(worker)
if self.parallel_config.worker_use_ray:
self._init_workers_ray(placement_group)
else:
self._init_workers(distributed_init_method)
# Profile the memory usage and initialize the cache.
self._init_cache()
# Create the scheduler.
self.scheduler = Scheduler(scheduler_config, cache_config, log_stats)
def _init_workers(self, distributed_init_method: str):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker # pylint: disable=import-outside-toplevel
assert self.parallel_config.world_size == 1, (
"Ray is required if parallel_config.world_size > 1.")
self.workers: List[Worker] = []
worker = Worker(
self.model_config,
self.parallel_config,
self.scheduler_config,
0,
distributed_init_method,
)
self.workers.append(worker)
self._run_workers(
"init_model",
get_all_outputs=True,
)
def _init_workers_ray(self, placement_group: "PlacementGroup"):
# Lazy import the Worker to avoid importing torch.cuda/xformers
# before CUDA_VISIBLE_DEVICES is set in the Worker
from vllm.worker.worker import Worker # pylint: disable=import-outside-toplevel
self.workers: List[Worker] = []
for bundle in placement_group.bundle_specs:
if not bundle.get("GPU", 0):
continue
worker = ray.remote(
num_cpus=0,
num_gpus=1,
scheduling_strategy=PlacementGroupSchedulingStrategy(
placement_group=placement_group,
placement_group_capture_child_tasks=True),
)(RayWorker).remote()
self.workers.append(worker)
# Initialize torch distributed process group for the workers.
init_torch_dist_process_group(self.workers, backend="nccl")
self._run_workers("init_worker",
get_all_outputs=True,
worker_init_fn=lambda: Worker(
self.model_config,
self.parallel_config,
self.scheduler_config,
None,
None,
))
self._run_workers(
"init_model",
get_all_outputs=True,
)
def _verify_args(self) -> None:
self.model_config.verify_with_parallel_config(self.parallel_config)
self.cache_config.verify_with_parallel_config(self.parallel_config)
......@@ -152,11 +201,12 @@ class LLMEngine:
engine_configs = engine_args.create_engine_configs()
parallel_config = engine_configs[2]
# Initialize the cluster.
distributed_init_method, devices = initialize_cluster(parallel_config)
distributed_init_method, placement_group = initialize_cluster(
parallel_config)
# Create the LLM engine.
engine = cls(*engine_configs,
distributed_init_method,
devices,
placement_group,
log_stats=not engine_args.disable_log_stats)
return engine
......@@ -326,9 +376,10 @@ class LLMEngine:
"""Runs the given method on all workers."""
all_outputs = []
for worker in self.workers:
executor = getattr(worker, method)
if self.parallel_config.worker_use_ray:
executor = executor.remote
executor = partial(worker.execute_method.remote, method)
else:
executor = getattr(worker, method)
output = executor(*args, **kwargs)
all_outputs.append(output)
......
import socket
from typing import List, Optional, Tuple
from typing import Optional, Tuple, TYPE_CHECKING
from vllm.config import ParallelConfig
try:
import ray
from ray.air.util.torch_dist import TorchDistributedWorker
class RayWorker(TorchDistributedWorker):
"""Ray wrapper for vllm.worker.Worker, allowing Worker to be
lazliy initialized after Ray sets CUDA_VISIBLE_DEVICES."""
def __init__(self) -> None:
self.worker = None
def init_worker(self, worker_init_fn):
self.worker = worker_init_fn()
def __getattr__(self, name):
return getattr(self.worker, name)
def execute_method(self, method, *args, **kwargs):
executor = getattr(self, method)
return executor(*args, **kwargs)
except ImportError:
ray = None
TorchDistributedWorker = None
from vllm.config import ParallelConfig
# rank, node resource (node IP), device id
DeviceID = Tuple[int, Optional[str], int]
if TYPE_CHECKING:
from ray.util.placement_group import PlacementGroup
def get_open_port():
......@@ -22,7 +42,7 @@ def initialize_cluster(
parallel_config: ParallelConfig,
engine_use_ray: bool = False,
ray_address: Optional[str] = None,
) -> Tuple[str, List[List[DeviceID]]]:
) -> Tuple[str, Optional["PlacementGroup"]]:
"""Initialize the distributed cluster probably with Ray.
Args:
......@@ -52,63 +72,36 @@ def initialize_cluster(
# We need to setup the distributed init method to make sure
# the distributed megatron code (e.g., get world size) works correctly.
distributed_init_method = f"tcp://localhost:{port}"
all_stage_devices = [[(0, None, 0)]]
return distributed_init_method, all_stage_devices
# Assume we have a uniform cluster that each node has the same number of
# GPUs for now.
valid_node_resources = []
num_devices_per_node = None
for node in ray.nodes():
if (not node["Alive"]) or node["Resources"]["GPU"] <= 0:
continue
if num_devices_per_node is None:
num_devices_per_node = node["Resources"]["GPU"]
else:
assert num_devices_per_node == node["Resources"]["GPU"], (
"The number of GPUs per node is not uniform.")
for key in node["Resources"]:
if key.startswith("node:"):
valid_node_resources.append(key)
# Verify the parallel config.
num_nodes = len(valid_node_resources)
if parallel_config.world_size > num_nodes * num_devices_per_node:
raise ValueError(
"The number of required GPUs exceeds the total number of "
"available GPUs.")
if parallel_config.tensor_parallel_size >= num_devices_per_node:
if parallel_config.tensor_parallel_size % num_devices_per_node != 0:
return distributed_init_method, None
current_placement_group = ray.util.get_current_placement_group()
if current_placement_group:
# We are in a placement group
bundles = current_placement_group.bundle_specs
# Verify that we can use the placement group.
gpu_bundles = 0
for bundle in bundles:
assert bundle.get("GPU", 0) > 1, (
"Placement group bundles cannot have more than 1 GPU")
if bundle.get("GPU", 0):
gpu_bundles += 1
if parallel_config.world_size > gpu_bundles:
raise ValueError(
"The number of tensor parallelism is not divisible by the "
"number of GPUs per node.")
"The number of required GPUs exceeds the total number of "
"available GPUs in the placement group.")
else:
if num_devices_per_node % parallel_config.tensor_parallel_size != 0:
num_gpus_in_cluster = ray.cluster_resources().get("GPU", 0)
if parallel_config.world_size > num_gpus_in_cluster:
raise ValueError(
"The number of GPUs per node is not divisible by the number "
"of tensor parallelism.")
# Assign GPUs to pipeline stages.
rank = 0
current_node_id = 0
current_device_id = 0
distributed_init_method = None
all_stage_devices = []
for _ in range(parallel_config.pipeline_parallel_size):
stage_devices = []
for _ in range(parallel_config.tensor_parallel_size):
node_resource = valid_node_resources[current_node_id]
stage_devices.append((rank, node_resource, current_device_id))
if distributed_init_method is None:
ip = node_resource.split("node:")[-1]
port = get_open_port()
distributed_init_method = f"tcp://{ip}:{port}"
rank += 1
current_device_id += 1
if current_device_id >= num_devices_per_node:
current_node_id += 1
current_device_id = 0
all_stage_devices.append(stage_devices)
return distributed_init_method, all_stage_devices
"The number of required GPUs exceeds the total number of "
"available GPUs in the cluster.")
# Create a new placement group
current_placement_group = ray.util.placement_group([{
"GPU": 1
}] * parallel_config.world_size)
# Wait until PG is ready - this will block until all
# requested resources are available, and will timeout
# if they cannot be provisioned.
ray.get(current_placement_group.ready(), timeout=1800)
return None, current_placement_group
"""A GPU worker class."""
from typing import Dict, List, Tuple
import os
from typing import Dict, List, Tuple, Optional
import torch
import torch.distributed
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
SchedulerConfig)
......@@ -27,8 +29,8 @@ class Worker:
model_config: ModelConfig,
parallel_config: ParallelConfig,
scheduler_config: SchedulerConfig,
rank: int,
distributed_init_method: str,
rank: Optional[int] = None,
distributed_init_method: Optional[str] = None,
) -> None:
self.model_config = model_config
self.parallel_config = parallel_config
......@@ -36,27 +38,39 @@ class Worker:
self.rank = rank
self.distributed_init_method = distributed_init_method
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
self.block_size = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
def init_model(self):
# This env var set by Ray causes exceptions with graph building.
os.environ.pop("NCCL_ASYNC_ERROR_HANDLING", None)
# Env vars will be set by Ray.
self.rank = self.rank if self.rank is not None else int(
os.getenv("RANK", "-1"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
self.device = torch.device(f"cuda:{local_rank}")
if self.rank < 0:
raise ValueError("Invalid or unspecified rank.")
torch.cuda.set_device(self.device)
# Initialize the distributed environment.
_init_distributed_environment(parallel_config, rank,
distributed_init_method)
_init_distributed_environment(self.parallel_config, self.rank,
self.distributed_init_method)
# Initialize the model.
set_random_seed(self.model_config.seed)
self.model = get_model(model_config)
self.model = get_model(self.model_config)
initialize_all_reduce_launcher(
self.scheduler_config.max_num_batched_tokens,
self.model_config.get_hidden_size(),
self.model_config.dtype,
)
# Uninitialized cache engine. Will be initialized by
# self.init_cache_engine().
self.cache_config = None
self.block_size = None
self.cache_engine = None
self.cache_events = None
self.gpu_cache = None
@torch.inference_mode()
def profile_num_available_blocks(
self,
......@@ -294,15 +308,28 @@ class Worker:
def _init_distributed_environment(
parallel_config: ParallelConfig,
rank: int,
distributed_init_method: str,
distributed_init_method: Optional[str] = None,
) -> None:
"""Initialize the distributed environment."""
torch.distributed.init_process_group(
backend="nccl",
world_size=parallel_config.world_size,
rank=rank,
init_method=distributed_init_method,
)
if torch.distributed.is_initialized():
torch_world_size = torch.distributed.get_world_size()
if torch_world_size != parallel_config.world_size:
raise RuntimeError(
"torch.distributed is already initialized but the torch world "
"size does not match parallel_config.world_size "
f"({torch_world_size} vs. {parallel_config.world_size}).")
elif not distributed_init_method:
raise ValueError(
"distributed_init_method must be set if torch.distributed "
"is not already initialized")
else:
torch.distributed.init_process_group(
backend="nccl",
world_size=parallel_config.world_size,
rank=rank,
init_method=distributed_init_method,
)
# A small all_reduce for warmup.
torch.distributed.all_reduce(torch.zeros(1).cuda())
initialize_model_parallel(parallel_config.tensor_parallel_size,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment