Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
89683b9e
Commit
89683b9e
authored
May 22, 2024
by
zhuwenwen
Browse files
add llama nn support
parent
3e147e19
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
60 additions
and
9 deletions
+60
-9
vllm/model_executor/layers/linear.py
vllm/model_executor/layers/linear.py
+54
-9
vllm/model_executor/model_loader.py
vllm/model_executor/model_loader.py
+6
-0
No files found.
vllm/model_executor/layers/linear.py
View file @
89683b9e
...
@@ -13,6 +13,8 @@ from vllm.model_executor.parallel_utils.utils import (
...
@@ -13,6 +13,8 @@ from vllm.model_executor.parallel_utils.utils import (
divide
,
split_tensor_along_last_dim
)
divide
,
split_tensor_along_last_dim
)
from
vllm.model_executor.utils
import
set_weight_attrs
from
vllm.model_executor.utils
import
set_weight_attrs
from
vllm.logger
import
init_logger
from
vllm.logger
import
init_logger
import
os
logger
=
init_logger
(
__name__
)
logger
=
init_logger
(
__name__
)
...
@@ -55,6 +57,7 @@ class UnquantizedLinearMethod(LinearMethodBase):
...
@@ -55,6 +57,7 @@ class UnquantizedLinearMethod(LinearMethodBase):
def
__init__
(
self
,
separate_bias_add
:
bool
=
False
):
def
__init__
(
self
,
separate_bias_add
:
bool
=
False
):
self
.
separate_bias_add
=
separate_bias_add
self
.
separate_bias_add
=
separate_bias_add
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
create_weights
(
self
,
input_size_per_partition
:
int
,
def
create_weights
(
self
,
input_size_per_partition
:
int
,
output_size_per_partition
:
int
,
input_size
:
int
,
output_size_per_partition
:
int
,
input_size
:
int
,
...
@@ -76,7 +79,15 @@ class UnquantizedLinearMethod(LinearMethodBase):
...
@@ -76,7 +79,15 @@ class UnquantizedLinearMethod(LinearMethodBase):
if
bias
:
if
bias
:
return
F
.
linear
(
x
,
weight
)
+
bias
return
F
.
linear
(
x
,
weight
)
+
bias
return
F
.
linear
(
x
,
weight
)
return
F
.
linear
(
x
,
weight
)
return
F
.
linear
(
x
,
weight
,
bias
)
if
self
.
use_llama_nn
:
weight
=
weight
.
reshape
(
weight
.
shape
[
1
],
-
1
)
if
bias
is
not
None
:
return
torch
.
matmul
(
x
,
weight
)
+
bias
else
:
return
torch
.
matmul
(
x
,
weight
)
else
:
return
F
.
linear
(
x
,
weight
,
bias
)
class
ReplicatedLinear
(
torch
.
nn
.
Module
):
class
ReplicatedLinear
(
torch
.
nn
.
Module
):
...
@@ -195,6 +206,7 @@ class ColumnParallelLinear(torch.nn.Module):
...
@@ -195,6 +206,7 @@ class ColumnParallelLinear(torch.nn.Module):
})
})
else
:
else
:
self
.
register_parameter
(
"bias"
,
None
)
self
.
register_parameter
(
"bias"
,
None
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
tp_rank
=
get_tensor_model_parallel_rank
()
tp_rank
=
get_tensor_model_parallel_rank
()
...
@@ -206,6 +218,9 @@ class ColumnParallelLinear(torch.nn.Module):
...
@@ -206,6 +218,9 @@ class ColumnParallelLinear(torch.nn.Module):
loaded_weight
=
loaded_weight
.
narrow
(
output_dim
,
start_idx
,
loaded_weight
=
loaded_weight
.
narrow
(
output_dim
,
start_idx
,
shard_size
)
shard_size
)
assert
param_data
.
shape
==
loaded_weight
.
shape
assert
param_data
.
shape
==
loaded_weight
.
shape
if
self
.
use_llama_nn
:
loaded_weight
=
loaded_weight
.
transpose
(
0
,
1
)
loaded_weight
=
loaded_weight
.
reshape
(
param_data
.
shape
[
0
],
-
1
)
param_data
.
copy_
(
loaded_weight
)
param_data
.
copy_
(
loaded_weight
)
def
forward
(
self
,
input_
):
def
forward
(
self
,
input_
):
...
@@ -259,6 +274,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
...
@@ -259,6 +274,7 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
assert
all
(
output_size
%
tp_size
==
0
for
output_size
in
output_sizes
)
assert
all
(
output_size
%
tp_size
==
0
for
output_size
in
output_sizes
)
super
().
__init__
(
input_size
,
sum
(
output_sizes
),
bias
,
gather_output
,
super
().
__init__
(
input_size
,
sum
(
output_sizes
),
bias
,
gather_output
,
skip_bias_add
,
params_dtype
,
linear_method
)
skip_bias_add
,
params_dtype
,
linear_method
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
def
weight_loader
(
self
,
param
:
Parameter
,
param
:
Parameter
,
...
@@ -311,8 +327,12 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
...
@@ -311,8 +327,12 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
shard_size
,
shard_offset
=
adjust_marlin_shard
(
shard_size
,
shard_offset
=
adjust_marlin_shard
(
param
,
shard_size
,
shard_offset
)
param
,
shard_size
,
shard_offset
)
param_data
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
if
self
.
use_llama_nn
:
shard_size
)
param_data_
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
else
:
param_data
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
start_idx
=
tp_rank
*
shard_size
start_idx
=
tp_rank
*
shard_size
loaded_weight
=
loaded_weight
.
narrow
(
output_dim
,
start_idx
,
loaded_weight
=
loaded_weight
.
narrow
(
output_dim
,
start_idx
,
shard_size
)
shard_size
)
...
@@ -323,8 +343,16 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
...
@@ -323,8 +343,16 @@ class MergedColumnParallelLinear(ColumnParallelLinear):
"Loading a weight without `output_dim` attribute in "
"Loading a weight without `output_dim` attribute in "
"MergedColumnParallelLinear, assume the weight is "
"MergedColumnParallelLinear, assume the weight is "
"the same for all partitions."
)
"the same for all partitions."
)
assert
param_data
.
shape
==
loaded_weight
.
shape
param_data
.
copy_
(
loaded_weight
)
if
self
.
use_llama_nn
:
assert
param_data_
.
shape
==
loaded_weight
.
shape
param_data_
.
copy_
(
loaded_weight
)
if
loaded_shard_id
==
1
and
len
(
param_data
.
shape
)
==
2
:
param_data
=
param_data
.
transpose
(
0
,
1
)
param
.
data
=
param_data
.
reshape
(
param_data
.
shape
[
1
],
-
1
)
else
:
assert
param_data
.
shape
==
loaded_weight
.
shape
param_data
.
copy_
(
loaded_weight
)
class
QKVParallelLinear
(
ColumnParallelLinear
):
class
QKVParallelLinear
(
ColumnParallelLinear
):
...
@@ -383,6 +411,7 @@ class QKVParallelLinear(ColumnParallelLinear):
...
@@ -383,6 +411,7 @@ class QKVParallelLinear(ColumnParallelLinear):
2
*
self
.
num_kv_heads
)
*
tp_size
*
self
.
head_size
2
*
self
.
num_kv_heads
)
*
tp_size
*
self
.
head_size
super
().
__init__
(
input_size
,
output_size
,
bias
,
False
,
skip_bias_add
,
super
().
__init__
(
input_size
,
output_size
,
bias
,
False
,
skip_bias_add
,
params_dtype
,
linear_method
)
params_dtype
,
linear_method
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
def
weight_loader
(
self
,
param
:
Parameter
,
param
:
Parameter
,
...
@@ -446,7 +475,11 @@ class QKVParallelLinear(ColumnParallelLinear):
...
@@ -446,7 +475,11 @@ class QKVParallelLinear(ColumnParallelLinear):
shard_size
,
shard_offset
=
adjust_marlin_shard
(
shard_size
,
shard_offset
=
adjust_marlin_shard
(
param
,
shard_size
,
shard_offset
)
param
,
shard_size
,
shard_offset
)
param_data
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
if
self
.
use_llama_nn
:
param_data_
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
else
:
param_data
=
param_data
.
narrow
(
output_dim
,
shard_offset
,
shard_size
)
shard_size
)
if
loaded_shard_id
==
"q"
:
if
loaded_shard_id
==
"q"
:
shard_id
=
tp_rank
shard_id
=
tp_rank
...
@@ -462,8 +495,16 @@ class QKVParallelLinear(ColumnParallelLinear):
...
@@ -462,8 +495,16 @@ class QKVParallelLinear(ColumnParallelLinear):
"Loading a weight without `output_dim` attribute in "
"Loading a weight without `output_dim` attribute in "
"QKVParallelLinear, assume the weight is the same "
"QKVParallelLinear, assume the weight is the same "
"for all partitions."
)
"for all partitions."
)
assert
param_data
.
shape
==
loaded_weight
.
shape
param_data
.
copy_
(
loaded_weight
)
if
self
.
use_llama_nn
:
assert
param_data_
.
shape
==
loaded_weight
.
shape
param_data_
.
copy_
(
loaded_weight
)
if
loaded_shard_id
==
"v"
and
len
(
param_data
.
shape
)
==
2
:
param_data
=
param_data
.
transpose
(
0
,
1
)
param
.
data
=
param_data
.
reshape
(
param_data
.
shape
[
1
],
-
1
)
else
:
assert
param_data
.
shape
==
loaded_weight
.
shape
param_data
.
copy_
(
loaded_weight
)
class
RowParallelLinear
(
torch
.
nn
.
Module
):
class
RowParallelLinear
(
torch
.
nn
.
Module
):
...
@@ -541,6 +582,7 @@ class RowParallelLinear(torch.nn.Module):
...
@@ -541,6 +582,7 @@ class RowParallelLinear(torch.nn.Module):
})
})
else
:
else
:
self
.
register_parameter
(
"bias"
,
None
)
self
.
register_parameter
(
"bias"
,
None
)
self
.
use_llama_nn
=
os
.
environ
.
get
(
'LLAMA_NN'
)
==
'1'
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
def
weight_loader
(
self
,
param
:
Parameter
,
loaded_weight
:
torch
.
Tensor
):
tp_rank
=
get_tensor_model_parallel_rank
()
tp_rank
=
get_tensor_model_parallel_rank
()
...
@@ -552,6 +594,9 @@ class RowParallelLinear(torch.nn.Module):
...
@@ -552,6 +594,9 @@ class RowParallelLinear(torch.nn.Module):
loaded_weight
=
loaded_weight
.
narrow
(
input_dim
,
start_idx
,
loaded_weight
=
loaded_weight
.
narrow
(
input_dim
,
start_idx
,
shard_size
)
shard_size
)
assert
param_data
.
shape
==
loaded_weight
.
shape
assert
param_data
.
shape
==
loaded_weight
.
shape
if
self
.
use_llama_nn
:
loaded_weight
=
loaded_weight
.
transpose
(
0
,
1
)
loaded_weight
=
loaded_weight
.
reshape
(
param_data
.
shape
[
0
],
-
1
)
param_data
.
copy_
(
loaded_weight
)
param_data
.
copy_
(
loaded_weight
)
def
forward
(
self
,
input_
):
def
forward
(
self
,
input_
):
...
@@ -578,4 +623,4 @@ class RowParallelLinear(torch.nn.Module):
...
@@ -578,4 +623,4 @@ class RowParallelLinear(torch.nn.Module):
else
:
else
:
output
=
output_
output
=
output_
output_bias
=
self
.
bias
output_bias
=
self
.
bias
return
output
,
output_bias
return
output
,
output_bias
\ No newline at end of file
vllm/model_executor/model_loader.py
View file @
89683b9e
...
@@ -9,6 +9,7 @@ from vllm.config import DeviceConfig, ModelConfig
...
@@ -9,6 +9,7 @@ from vllm.config import DeviceConfig, ModelConfig
from
vllm.model_executor.models
import
ModelRegistry
from
vllm.model_executor.models
import
ModelRegistry
from
vllm.model_executor.weight_utils
import
(
get_quant_config
,
from
vllm.model_executor.weight_utils
import
(
get_quant_config
,
initialize_dummy_weights
)
initialize_dummy_weights
)
import
os
@
contextlib
.
contextmanager
@
contextlib
.
contextmanager
...
@@ -22,6 +23,8 @@ def _set_default_torch_dtype(dtype: torch.dtype):
...
@@ -22,6 +23,8 @@ def _set_default_torch_dtype(dtype: torch.dtype):
def
_get_model_architecture
(
model_config
:
ModelConfig
)
->
Type
[
nn
.
Module
]:
def
_get_model_architecture
(
model_config
:
ModelConfig
)
->
Type
[
nn
.
Module
]:
architectures
=
getattr
(
model_config
.
hf_config
,
"architectures"
,
[])
architectures
=
getattr
(
model_config
.
hf_config
,
"architectures"
,
[])
if
architectures
==
[
'LlamaForCausalLM'
]:
os
.
environ
[
'LLAMA_NN'
]
=
'1'
# Special handling for quantized Mixtral.
# Special handling for quantized Mixtral.
# FIXME(woosuk): This is a temporary hack.
# FIXME(woosuk): This is a temporary hack.
if
(
model_config
.
quantization
is
not
None
if
(
model_config
.
quantization
is
not
None
...
@@ -61,6 +64,9 @@ def get_model(model_config: ModelConfig, device_config: DeviceConfig,
...
@@ -61,6 +64,9 @@ def get_model(model_config: ModelConfig, device_config: DeviceConfig,
f
"method
{
model_config
.
quantization
}
. Supported dtypes: "
f
"method
{
model_config
.
quantization
}
. Supported dtypes: "
f
"
{
supported_dtypes
}
"
)
f
"
{
supported_dtypes
}
"
)
linear_method
=
quant_config
.
get_linear_method
()
linear_method
=
quant_config
.
get_linear_method
()
if
linear_method
!=
None
:
os
.
environ
[
'LLAMA_NN'
]
=
'0'
with
_set_default_torch_dtype
(
model_config
.
dtype
):
with
_set_default_torch_dtype
(
model_config
.
dtype
):
# Create a model instance.
# Create a model instance.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment