Commit 7e1d5e53 authored by zhuwenwen's avatar zhuwenwen
Browse files

merge v0.3.1

parents e3378b20 5f08050d
......@@ -6,15 +6,16 @@ set -o pipefail
# cd into parent directory of this file
cd "$(dirname "${BASH_SOURCE[0]}")/.."
(wget && curl) || (apt-get update && apt-get install -y wget curl)
(which wget && which curl) || (apt-get update && apt-get install -y wget curl)
# run benchmarks and upload the result to buildkite
# run python-based benchmarks and upload the result to buildkite
python3 benchmarks/benchmark_latency.py 2>&1 | tee benchmark_latency.txt
bench_latency_exit_code=$?
python3 benchmarks/benchmark_throughput.py --input-len 256 --output-len 256 2>&1 | tee benchmark_throughput.txt
bench_throughput_exit_code=$?
# run server-based benchmarks and upload the result to buildkite
python3 -m vllm.entrypoints.openai.api_server --model meta-llama/Llama-2-7b-chat-hf &
server_pid=$!
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
......@@ -22,11 +23,14 @@ wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/r
# wait for server to start, timeout after 600 seconds
timeout 600 bash -c 'until curl localhost:8000/v1/models; do sleep 1; done' || exit 1
python3 benchmarks/benchmark_serving.py \
--backend openai \
--dataset ./ShareGPT_V3_unfiltered_cleaned_split.json \
--model meta-llama/Llama-2-7b-chat-hf \
--num-prompts 20 \
--endpoint /v1/completions \
--tokenizer meta-llama/Llama-2-7b-chat-hf 2>&1 | tee benchmark_serving.txt
--tokenizer meta-llama/Llama-2-7b-chat-hf \
--save-result \
2>&1 | tee benchmark_serving.txt
bench_serving_exit_code=$?
kill $server_pid
......@@ -44,7 +48,7 @@ sed -n '$p' benchmark_throughput.txt >> benchmark_results.md # last line
echo "### Serving Benchmarks" >> benchmark_results.md
sed -n '1p' benchmark_serving.txt >> benchmark_results.md # first line
echo "" >> benchmark_results.md
tail -n 5 benchmark_serving.txt >> benchmark_results.md # last 5 lines
tail -n 13 benchmark_serving.txt >> benchmark_results.md # last 13 lines
# upload the results to buildkite
/workspace/buildkite-agent annotate --style "info" --context "benchmark-results" < benchmark_results.md
......@@ -61,3 +65,5 @@ fi
if [ $bench_serving_exit_code -ne 0 ]; then
exit $bench_serving_exit_code
fi
/workspace/buildkite-agent artifact upload openai-*.json
......@@ -49,3 +49,10 @@ steps:
commands:
- pip install aiohttp
- bash run-benchmarks.sh
- label: Documentation Build
working_dir: "/vllm-workspace/docs"
no_gpu: True
commands:
- pip install -r requirements-docs.txt
- SPHINXOPTS=\"-W\" make html
......@@ -35,13 +35,15 @@ steps:
- image: "{{ docker_image }}"
command: ["bash"]
args:
- "-c"
- '-c'
- "'cd {{ (step.working_dir or default_working_dir) | safe }} && {{ step.command or (step.commands | join(' && ')) | safe }}'"
{% if not step.no_gpu %}
resources:
requests:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
limits:
nvidia.com/gpu: "{{ step.num_gpus or default_num_gpu }}"
{% endif %}
env:
- name: HF_TOKEN
valueFrom:
......
......@@ -7,6 +7,12 @@ FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS dev
RUN apt-get update -y \
&& apt-get install -y python3-pip git
# Workaround for https://github.com/openai/triton/issues/2507 and
# https://github.com/pytorch/pytorch/issues/107960 -- hopefully
# this won't be needed for future versions of this docker image
# or future versions of triton.
RUN ldconfig /usr/local/cuda-12.1/compat/
WORKDIR /workspace
# install build and runtime dependencies
......@@ -69,8 +75,10 @@ RUN --mount=type=cache,target=/root/.cache/pip VLLM_USE_PRECOMPILED=1 pip instal
#################### RUNTIME BASE IMAGE ####################
# use CUDA base as CUDA runtime dependencies are already installed via pip
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS vllm-base
# We used base cuda image because pytorch installs its own cuda libraries.
# However cupy depends on cuda libraries so we had to switch to the runtime image
# In the future it would be nice to get a container with pytorch and cuda without duplicating cuda
FROM nvidia/cuda:12.1.0-runtime-ubuntu22.04 AS vllm-base
# libnccl required for ray
RUN apt-get update -y \
......
......@@ -10,9 +10,6 @@ RUN echo "Base image is $BASE_IMAGE"
# BASE_IMAGE for ROCm_5.7: "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1"
# BASE_IMAGE for ROCm_6.0: "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
# this does not always work for all rocm versions
RUN LLVM_GFX_ARCH=$(/opt/rocm/llvm/bin/amdgpu-offload-arch) && \
echo "LLVM_GFX_ARCH is $LLVM_GFX_ARCH"
ARG FA_GFX_ARCHS="gfx90a;gfx942"
RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
......@@ -20,6 +17,12 @@ RUN echo "FA_GFX_ARCHS is $FA_GFX_ARCHS"
ARG FA_BRANCH="3d2b6f5"
RUN echo "FA_BRANCH is $FA_BRANCH"
# whether to build flash-attention
# if 0, will not build flash attention
# this is useful for gfx target where flash-attention is not supported
# In that case, we need to use the python reference attention implementation in vllm
ARG BUILD_FA="1"
# Install some basic utilities
RUN apt-get update && apt-get install python3 python3-pip -y
......@@ -53,9 +56,10 @@ ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib/:/libtorch/lib:
ENV CPLUS_INCLUDE_PATH=$CPLUS_INCLUDE_PATH:/libtorch/include:/libtorch/include/torch/csrc/api/include/:/opt/rocm/include/:
# Install ROCm flash-attention
RUN mkdir libs \
RUN if [ "$BUILD_FA" = "1" ]; then \
mkdir libs \
&& cd libs \
&& git clone https://github.com/ROCmSoftwarePlatform/flash-attention.git \
&& git clone https://github.com/ROCm/flash-attention.git \
&& cd flash-attention \
&& git checkout ${FA_BRANCH} \
&& git submodule update --init \
......@@ -63,7 +67,8 @@ RUN mkdir libs \
&& if [ "$BASE_IMAGE" = "rocm/pytorch:rocm5.7_ubuntu22.04_py3.10_pytorch_2.0.1" ]; then \
patch /opt/conda/envs/py_3.10/lib/python3.10/site-packages/torch/utils/hipify/hipify_python.py hipify_patch.patch; fi \
&& python3 setup.py install \
&& cd ..
&& cd ..; \
fi
COPY ./ /app/vllm
......@@ -78,7 +83,9 @@ RUN if [ "$BASE_IMAGE" = "rocm/pytorch:rocm6.0_ubuntu20.04_py3.9_pytorch_2.1.1"
RUN cd /app \
&& cd vllm \
&& pip install -U -r requirements-rocm.txt \
&& bash patch_xformers.rocm.sh \
&& if [ "$BUILD_FA" = "1" ]; then \
bash patch_xformers.rocm.sh; fi \
&& patch /opt/rocm/include/hip/amd_detail/amd_hip_bf16.h /app/vllm/rocm_patch/rocm_bf16.patch \
&& python3 setup.py install \
&& cd ..
......
# <div align="center"><strong>vLLM</strong></div>
## 简介
vLLM是一个快速且易于使用的LLM推理和服务库,使用PageAttention高效管理kv内存,Continuous batching传入请求,支持很多Hugging Face模型,如LLaMA & LLaMA-2、Qwen、Chatglm2 & Chatglm23等。
vLLM是一个快速且易于使用的LLM推理和服务库,使用PageAttention高效管理kv内存,Continuous batching传入请求,支持很多Hugging Face模型,如LLaMA & LLaMA-2、Qwen、Chatglm2 & Chatglm3等。
## 安装
vLLM支持
......@@ -41,7 +41,7 @@ python3 setup.py install
+ 若使用 pip install 下载安装过慢,可添加源:-i https://pypi.tuna.tsinghua.edu.cn/simple/
## 验证
- python -c "import vllm; print(vllm.\_\_version__)",版本号与官方版本同步,查询该软件的版本号,例如0.3.0
- python -c "import vllm; print(vllm.\_\_version__)",版本号与官方版本同步,查询该软件的版本号,例如0.3.1
## Known Issue
-
......
......@@ -16,16 +16,8 @@ Easy, fast, and cheap LLM serving for everyone
---
**The Second vLLM Bay Area Meetup (Jan 31st 5pm-7:30pm PT)**
We are thrilled to announce our second vLLM Meetup!
The vLLM team will share recent updates and roadmap.
We will also have vLLM collaborators from IBM coming up to the stage to discuss their insights on LLM optimizations.
Please register [here](https://lu.ma/ygxbpzhl) and join us!
---
*Latest News* 🔥
- [2024/01] We hosted [the second vLLM meetup](https://lu.ma/ygxbpzhl) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/12mI2sKABnUw5RBWXDYY-HtHth4iMSNcEoQ10jDQbxgA/edit?usp=sharing).
- [2024/01] Added ROCm 6.0 support to vLLM.
- [2023/12] Added ROCm 5.7 support to vLLM.
- [2023/10] We hosted [the first vLLM meetup](https://lu.ma/first-vllm-meetup) in SF! Please find the meetup slides [here](https://docs.google.com/presentation/d/1QL-XPFXiFpDBh86DbEegFXBXFXjix4v032GhShbKf3s/edit?usp=sharing).
......@@ -73,6 +65,7 @@ vLLM seamlessly supports many Hugging Face models, including the following archi
- GPT-J (`EleutherAI/gpt-j-6b`, `nomic-ai/gpt4all-j`, etc.)
- GPT-NeoX (`EleutherAI/gpt-neox-20b`, `databricks/dolly-v2-12b`, `stabilityai/stablelm-tuned-alpha-7b`, etc.)
- InternLM (`internlm/internlm-7b`, `internlm/internlm-chat-7b`, etc.)
- InternLM2 (`internlm/internlm2-7b`, `internlm/internlm2-chat-7b`, etc.)
- LLaMA & LLaMA-2 (`meta-llama/Llama-2-70b-hf`, `lmsys/vicuna-13b-v1.3`, `young-geng/koala`, `openlm-research/open_llama_13b`, etc.)
- Mistral (`mistralai/Mistral-7B-v0.1`, `mistralai/Mistral-7B-Instruct-v0.1`, etc.)
- Mixtral (`mistralai/Mixtral-8x7B-v0.1`, `mistralai/Mixtral-8x7B-Instruct-v0.1`, etc.)
......
import json
import os
import time
from dataclasses import dataclass
from typing import Optional
import aiohttp
from tqdm.asyncio import tqdm
AIOHTTP_TIMEOUT = aiohttp.ClientTimeout(total=6 * 60 * 60)
@dataclass
class RequestFuncInput:
prompt: str
api_url: str
prompt_len: int
output_len: int
model: str
best_of: int = 1
use_beam_search: bool = False
@dataclass
class RequestFuncOutput:
generated_text: str = ""
success: bool = False
latency: float = 0
ttft: float = 0
prompt_len: int = 0
async def async_request_tgi(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
params = {
"best_of": request_func_input.best_of,
"max_new_tokens": request_func_input.output_len,
"do_sample": True,
"temperature": 0.01, # TGI does not accept 0.0 temperature.
"top_p": 0.99, # TGI does not accept 1.0 top_p.
}
payload = {
"inputs": request_func_input.prompt,
"parameters": params,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_vllm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
payload = {
"prompt": request_func_input.prompt,
"n": 1,
"best_of": request_func_input.best_of,
"use_beam_search": request_func_input.use_beam_search,
"temperature": 0.0 if request_func_input.use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"ignore_eos": True,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as response:
if response.status == 200:
async for data in response.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
# When streaming, '\0' is appended to the end of the response.
body = data.decode("utf-8").strip("\0")
output.generated_text = json.loads(
body)["text"][0][len(request_func_input.prompt):]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_trt_llm(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("generate_stream")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
assert request_func_input.best_of == 1
payload = {
"accumulate_tokens": True,
"text_input": request_func_input.prompt,
"temperature": 0.0,
"top_p": 1.0,
"max_tokens": request_func_input.output_len,
"stream": True,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload) as resp:
if resp.status == 200:
async for data in resp.content.iter_any():
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
output.latency = time.perf_counter() - st
body = data.decode("utf-8").lstrip("data:")
output.generated_text = json.loads(body)["text_output"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_deepspeed_mii(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert request_func_input.best_of == 1
assert not request_func_input.use_beam_search
payload = {
"prompts": request_func_input.prompt,
"max_new_tokens": request_func_input.output_len,
"ignore_eos": True,
"do_sample": True,
"temperature":
0.01, # deepspeed-mii does not accept 0.0 temperature.
"top_p": 1.0,
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
# DeepSpeed-MII doesn't support streaming as of Jan 28 2024, will use 0 as placeholder.
# https://github.com/microsoft/DeepSpeed-MII/pull/311
output.ttft = 0
st = time.perf_counter()
try:
async with session.post(url=request_func_input.api_url,
json=payload) as resp:
if resp.status == 200:
parsed_resp = await resp.json()
output.latency = time.perf_counter() - st
output.generated_text = parsed_resp[0]["generated_text"]
output.success = True
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
async def async_request_openai_completions(
request_func_input: RequestFuncInput,
pbar: Optional[tqdm] = None,
) -> RequestFuncOutput:
api_url = request_func_input.api_url
assert api_url.endswith("v1/completions")
async with aiohttp.ClientSession(timeout=AIOHTTP_TIMEOUT) as session:
assert not request_func_input.use_beam_search
payload = {
"model": request_func_input.model,
"prompt": request_func_input.prompt,
"temperature": 0.0,
"best_of": request_func_input.best_of,
"max_tokens": request_func_input.output_len,
"stream": True,
}
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}"
}
output = RequestFuncOutput()
output.prompt_len = request_func_input.prompt_len
generated_text = ""
ttft = 0
st = time.perf_counter()
try:
async with session.post(url=api_url, json=payload,
headers=headers) as response:
if response.status == 200:
async for chunk in response.content:
if ttft == 0:
ttft = time.perf_counter() - st
output.ttft = ttft
chunk = chunk.strip()
if not chunk:
continue
chunk = chunk.decode("utf-8").lstrip("data: ")
if chunk == "[DONE]":
latency = time.perf_counter() - st
else:
body = json.loads(chunk)
generated_text += body["choices"][0]["text"]
output.generated_text = generated_text
output.success = True
output.latency = latency
else:
output.success = False
except (aiohttp.ClientOSError, aiohttp.ServerDisconnectedError):
output.success = False
if pbar:
pbar.update(1)
return output
ASYNC_REQUEST_FUNCS = {
"tgi": async_request_tgi,
"vllm": async_request_vllm,
"deepspeed-mii": async_request_deepspeed_mii,
"openai": async_request_openai_completions,
"tensorrt-llm": async_request_trt_llm,
}
......@@ -25,6 +25,7 @@ def main(args: argparse.Namespace):
dtype=args.dtype,
enforce_eager=args.enforce_eager,
kv_cache_dtype=args.kv_cache_dtype,
device=args.device,
)
sampling_params = SamplingParams(
......@@ -36,7 +37,10 @@ def main(args: argparse.Namespace):
max_tokens=args.output_len,
)
print(sampling_params)
dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
dummy_prompt_token_ids = np.random.randint(10000,
size=(args.batch_size,
args.input_len))
dummy_prompt_token_ids = dummy_prompt_token_ids.tolist()
def run_to_completion(profile_dir: Optional[str] = None):
if profile_dir:
......@@ -70,7 +74,7 @@ def main(args: argparse.Namespace):
"."
) / "vllm_benchmark_result" / f"latency_result_{time.time()}"
print(f"Profiling (results will be saved to '{profile_dir}')...")
run_to_completion(profile_dir=args.profile_result_dir)
run_to_completion(profile_dir=profile_dir)
return
# Benchmark.
......@@ -135,5 +139,11 @@ if __name__ == '__main__':
default=None,
help=('path to save the pytorch profiler output. Can be visualized '
'with ui.perfetto.dev or Tensorboard.'))
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
main(args)
......@@ -20,16 +20,36 @@ import asyncio
import json
import random
import time
from dataclasses import dataclass
from datetime import datetime
from typing import AsyncGenerator, List, Tuple
import aiohttp
import numpy as np
from tqdm.asyncio import tqdm
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []
from backend_request_func import (
ASYNC_REQUEST_FUNCS,
RequestFuncInput,
RequestFuncOutput,
)
@dataclass
class BenchmarkMetrics:
completed: int
total_input: int
total_output: int
request_throughput: float
input_throughput: float
output_throughput: float
mean_ttft_ms: float
median_ttft_ms: float
p99_ttft_ms: float
mean_tpot_ms: float
median_tpot_ms: float
p99_tpot_ms: float
def sample_requests(
......@@ -46,6 +66,11 @@ def sample_requests(
dataset = [(data["conversations"][0]["value"],
data["conversations"][1]["value"]) for data in dataset]
# some of these will be filtered out, so sample more than we need
sampled_indices = random.sample(range(len(dataset)),
int(num_requests * 1.2))
dataset = [dataset[i] for i in sampled_indices]
# Tokenize the prompts and completions.
prompts = [prompt for prompt, _ in dataset]
prompt_token_ids = tokenizer(prompts).input_ids
......@@ -92,158 +117,271 @@ async def get_request(
await asyncio.sleep(interval)
async def send_request(backend: str, model: str, api_url: str, prompt: str,
prompt_len: int, output_len: int, best_of: int,
use_beam_search: bool, pbar: tqdm) -> None:
request_start_time = time.perf_counter()
headers = {"User-Agent": "Benchmark Client"}
if backend == "vllm":
pload = {
"prompt": prompt,
"n": 1,
"best_of": best_of,
"use_beam_search": use_beam_search,
"temperature": 0.0 if use_beam_search else 1.0,
"top_p": 1.0,
"max_tokens": output_len,
"ignore_eos": True,
"stream": False,
}
if model is not None:
pload["model"] = model
elif backend == "tgi":
assert not use_beam_search
params = {
"best_of": best_of,
"max_new_tokens": output_len,
"do_sample": True,
}
pload = {
"inputs": prompt,
"parameters": params,
}
else:
raise ValueError(f"Unknown backend: {backend}")
timeout = aiohttp.ClientTimeout(total=3 * 3600)
async with aiohttp.ClientSession(timeout=timeout) as session:
while True:
async with session.post(api_url, headers=headers,
json=pload) as response:
chunks = []
async for chunk, _ in response.content.iter_chunks():
chunks.append(chunk)
output = b"".join(chunks).decode("utf-8")
output = json.loads(output)
def calculate_metrics(
input_requests: List[Tuple[str, int, int]],
outputs: List[RequestFuncOutput],
dur_s: float,
tokenizer: PreTrainedTokenizerBase,
) -> BenchmarkMetrics:
total_output = 0
total_input = 0
completed = 0
per_token_latencies = []
ttfts = []
for i in range(len(outputs)):
if outputs[i].success:
output_len = len(tokenizer.encode(outputs[i].generated_text))
total_output += output_len
total_input += input_requests[i][1]
per_token_latencies.append(outputs[i].latency / output_len)
ttfts.append(outputs[i].ttft)
completed += 1
# Re-send the request if it failed.
if "error" not in output:
break
metrics = BenchmarkMetrics(
completed=completed,
total_input=total_input,
total_output=total_output,
request_throughput=completed / dur_s,
input_throughput=total_input / dur_s,
output_throughput=total_output / dur_s,
mean_ttft_ms=np.mean(ttfts) * 1000,
median_ttft_ms=np.median(ttfts) * 1000,
p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
mean_tpot_ms=np.mean(per_token_latencies) * 1000,
median_tpot_ms=np.median(per_token_latencies) * 1000,
p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
)
request_end_time = time.perf_counter()
request_latency = request_end_time - request_start_time
REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
pbar.update(1)
return metrics
async def benchmark(
backend: str,
model: str,
api_url: str,
model_id: str,
tokenizer: PreTrainedTokenizerBase,
input_requests: List[Tuple[str, int, int]],
best_of: int,
use_beam_search: bool,
request_rate: float,
) -> None:
tasks: List[asyncio.Task] = []
pbar = tqdm(total=len(input_requests))
disable_tqdm: bool,
):
if backend in ASYNC_REQUEST_FUNCS:
request_func = ASYNC_REQUEST_FUNCS.get(backend)
else:
raise ValueError(f"Unknown backend: {backend}")
pbar = None if disable_tqdm else tqdm(total=len(input_requests))
print(f"Traffic request rate: {request_rate}")
benchmark_start_time = time.perf_counter()
tasks = []
async for request in get_request(input_requests, request_rate):
prompt, prompt_len, output_len = request
task = asyncio.create_task(
send_request(backend, model, api_url, prompt, prompt_len,
output_len, best_of, use_beam_search, pbar))
tasks.append(task)
await asyncio.gather(*tasks)
request_func_input = RequestFuncInput(
model=model_id,
prompt=prompt,
api_url=api_url,
prompt_len=prompt_len,
output_len=output_len,
best_of=best_of,
use_beam_search=use_beam_search,
)
tasks.append(
asyncio.create_task(
request_func(request_func_input=request_func_input,
pbar=pbar)))
outputs = await asyncio.gather(*tasks)
if not disable_tqdm:
pbar.close()
benchmark_duration = time.perf_counter() - benchmark_start_time
metrics = calculate_metrics(
input_requests=input_requests,
outputs=outputs,
dur_s=benchmark_duration,
tokenizer=tokenizer,
)
print(f"Successful requests: {metrics.completed}")
print(f"Benchmark duration: {benchmark_duration:2f} s")
print(f"Total input tokens: {metrics.total_input}")
print(f"Total generated tokens: {metrics.total_output}")
print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")
result = {
"duration": benchmark_duration,
"completed": metrics.completed,
"total_input_tokens": metrics.total_input,
"total_output_tokens": metrics.total_output,
"request_inthroughput": metrics.request_throughput,
"input_throughput": metrics.input_throughput,
"output_throughput": metrics.output_throughput,
"mean_ttft_ms": metrics.mean_ttft_ms,
"median_ttft_ms": metrics.median_ttft_ms,
"p99_ttft_ms": metrics.p99_ttft_ms,
"mean_tpot_ms": metrics.mean_tpot_ms,
"median_tpot_ms": metrics.median_tpot_ms,
"p99_tpot_ms": metrics.p99_tpot_ms
}
return result
def main(args: argparse.Namespace):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
api_url = f"{args.protocol}://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(args.tokenizer,
backend = args.backend
model_id = args.model
tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model
if args.base_url is not None:
api_url = f"{args.base_url}{args.endpoint}"
else:
api_url = f"http://{args.host}:{args.port}{args.endpoint}"
tokenizer = get_tokenizer(tokenizer_id,
trust_remote_code=args.trust_remote_code)
input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)
benchmark_start_time = time.perf_counter()
asyncio.run(
benchmark(args.backend, args.model, api_url, input_requests,
args.best_of, args.use_beam_search, args.request_rate))
benchmark_end_time = time.perf_counter()
benchmark_time = benchmark_end_time - benchmark_start_time
print(f"Total time: {benchmark_time:.2f} s")
print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")
# Compute the latency statistics.
avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
print(f"Average latency: {avg_latency:.2f} s")
avg_per_token_latency = np.mean([
latency / (prompt_len + output_len)
for prompt_len, output_len, latency in REQUEST_LATENCY
])
print(f"Average latency per token: {avg_per_token_latency:.2f} s")
avg_per_output_token_latency = np.mean(
[latency / output_len for _, output_len, latency in REQUEST_LATENCY])
print("Average latency per output token: "
f"{avg_per_output_token_latency:.2f} s")
benchmark_result = asyncio.run(
benchmark(
backend=backend,
api_url=api_url,
model_id=model_id,
tokenizer=tokenizer,
input_requests=input_requests,
best_of=args.best_of,
use_beam_search=args.use_beam_search,
request_rate=args.request_rate,
disable_tqdm=args.disable_tqdm,
))
# Save config and results to json
if args.save_result:
result_json = {}
# Setup
current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
result_json["date"] = current_dt
result_json["backend"] = backend
result_json["version"] = args.version
result_json["model_id"] = model_id
result_json["tokenizer_id"] = tokenizer_id
result_json["best_of"] = args.best_of
result_json["use_beam_search"] = args.use_beam_search
result_json["num_prompts"] = args.num_prompts
# Traffic
result_json["request_rate"] = (
args.request_rate if args.request_rate < float("inf") else "inf")
# Merge with benchmark result
result_json = {**result_json, **benchmark_result}
# Save to file
base_model_id = model_id.split("/")[-1]
file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
with open(file_name, "w") as outfile:
json.dump(result_json, outfile)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Benchmark the online serving throughput.")
parser.add_argument("--backend",
parser.add_argument(
"--backend",
type=str,
default="vllm",
choices=["vllm", "tgi"])
parser.add_argument("--protocol",
choices=list(ASYNC_REQUEST_FUNCS.keys()),
)
parser.add_argument(
"--version",
type=str,
default="http",
choices=["http", "https"])
default="N/A",
help="Version of the serving backend/engine.",
)
parser.add_argument(
"--base-url",
type=str,
default=None,
help="Server or API base url if not using http host and port.",
)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--endpoint", type=str, default="/generate")
parser.add_argument("--model", type=str, default=None)
parser.add_argument(
"--endpoint",
type=str,
default="/generate",
help="API endpoint.",
)
parser.add_argument("--dataset",
type=str,
required=True,
help="Path to the dataset.")
parser.add_argument("--tokenizer",
parser.add_argument(
"--model",
type=str,
required=True,
help="Name or path of the tokenizer.")
parser.add_argument("--best-of",
help="Name of the model.",
)
parser.add_argument(
"--tokenizer",
type=str,
help=
"Name or path of the tokenizer, if not using the default model tokenizer.",
)
parser.add_argument(
"--best-of",
type=int,
default=1,
help="Generates `best_of` sequences per prompt and "
"returns the best one.")
"returns the best one.",
)
parser.add_argument("--use-beam-search", action="store_true")
parser.add_argument("--num-prompts",
parser.add_argument(
"--num-prompts",
type=int,
default=1000,
help="Number of prompts to process.")
parser.add_argument("--request-rate",
help="Number of prompts to process.",
)
parser.add_argument(
"--request-rate",
type=float,
default=float("inf"),
help="Number of requests per second. If this is inf, "
"then all the requests are sent at time 0. "
"Otherwise, we use Poisson process to synthesize "
"the request arrival times.")
"the request arrival times.",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument('--trust-remote-code',
action='store_true',
help='trust remote code from huggingface')
parser.add_argument(
"--trust-remote-code",
action="store_true",
help="Trust remote code from huggingface",
)
parser.add_argument(
"--disable-tqdm",
action="store_true",
help="Specify to disbale tqdm progress bar.",
)
parser.add_argument(
"--save-result",
action="store_true",
help="Specify to save benchmark results to a json file",
)
args = parser.parse_args()
main(args)
......@@ -72,6 +72,7 @@ def run_vllm(
max_model_len: Optional[int],
enforce_eager: bool,
kv_cache_dtype: str,
device: str,
) -> float:
from vllm import LLM, SamplingParams
llm = LLM(
......@@ -85,6 +86,7 @@ def run_vllm(
max_model_len=max_model_len,
enforce_eager=enforce_eager,
kv_cache_dtype=kv_cache_dtype,
device=device,
)
# Add the requests to the engine.
......@@ -209,7 +211,7 @@ def main(args: argparse.Namespace):
args.seed, args.n, args.use_beam_search,
args.trust_remote_code, args.dtype,
args.max_model_len, args.enforce_eager,
args.kv_cache_dtype)
args.kv_cache_dtype, args.device)
elif args.backend == "hf":
assert args.tensor_parallel_size == 1
elapsed_time = run_hf(requests, args.model, tokenizer, args.n,
......@@ -294,6 +296,12 @@ if __name__ == "__main__":
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda"],
help='device type for vLLM execution, supporting CUDA only currently.')
args = parser.parse_args()
if args.tokenizer is None:
args.tokenizer = args.model
......
......@@ -25,10 +25,12 @@ def main(
dtype: torch.dtype,
seed: int,
do_profile: bool,
device: str = "cuda",
kv_cache_dtype: Optional[str] = None,
) -> None:
random.seed(seed)
torch.random.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
scale = float(1.0 / (head_size**0.5))
......@@ -36,7 +38,7 @@ def main(
num_query_heads,
head_size,
dtype=dtype,
device="cuda")
device=device)
query.uniform_(-scale, scale)
assert num_query_heads % num_kv_heads == 0
......@@ -44,11 +46,11 @@ def main(
if use_alibi:
alibi_slopes = torch.randn(num_query_heads,
dtype=torch.float,
device="cuda")
device=device)
context_lens = [context_len for _ in range(num_seqs)]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device="cuda")
context_lens = torch.tensor(context_lens, dtype=torch.int, device=device)
# Create the block tables.
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
......@@ -59,12 +61,17 @@ def main(
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device="cuda")
block_tables = torch.tensor(block_tables, dtype=torch.int, device=device)
# Create the KV cache.
key_caches, value_caches = create_kv_caches_with_random(
NUM_BLOCKS, block_size, 1, num_kv_heads, head_size, kv_cache_dtype,
dtype)
key_caches, value_caches = create_kv_caches_with_random(NUM_BLOCKS,
block_size,
1,
num_kv_heads,
head_size,
kv_cache_dtype,
dtype,
device=device)
key_cache, value_cache = key_caches[0], value_caches[0]
# Prepare for the paged attention kernel.
......@@ -84,7 +91,7 @@ def main(
)
max_logits = torch.empty_like(exp_sums)
def run_benchmark(num_iters: int, profile: bool = False) -> float:
def run_cuda_benchmark(num_iters: int, profile: bool = False) -> float:
torch.cuda.synchronize()
if profile:
torch.cuda.cudart().cudaProfilerStart()
......@@ -135,6 +142,7 @@ def main(
# Warmup.
print("Warming up...")
run_benchmark = run_cuda_benchmark
run_benchmark(num_iters=3, profile=False)
# Benchmark.
......@@ -175,6 +183,7 @@ if __name__ == '__main__':
default="auto",
help=
'Data type for kv cache storage. If "auto", will use model data type.')
parser.add_argument("--device", type=str, choices=["cuda"], default="cuda")
args = parser.parse_args()
print(args)
......
......@@ -6,7 +6,7 @@ TOKENS=$2
docker run --gpus all --shm-size 1g -p $PORT:80 \
-v $PWD/data:/data \
ghcr.io/huggingface/text-generation-inference:0.8 \
ghcr.io/huggingface/text-generation-inference:1.4.0 \
--model-id $MODEL \
--sharded false \
--max-input-length 1024 \
......
......@@ -25,7 +25,9 @@
#include "attention_dtypes.h"
#include "attention_utils.cuh"
#ifdef ENABLE_FP8_E5M2
#include "../quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
......
......@@ -4,13 +4,20 @@
#include "cuda_compat.h"
#include "dispatch_utils.h"
#ifdef ENABLE_FP8_E5M2
#include "quantization/fp8_e5m2_kvcache/quant_utils.cuh"
#endif
#include <algorithm>
#include <cassert>
#include <map>
#include <vector>
#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif
void swap_blocks(
torch::Tensor& src,
torch::Tensor& dst,
......
#include "moe_ops.h"
#include <torch/extension.h>
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("topk_softmax", &topk_softmax, "Apply topk softmax to the gating outputs.");
}
#pragma once
#include <torch/extension.h>
void topk_softmax(
torch::Tensor& topk_weights,
torch::Tensor& topk_indices,
torch::Tensor& token_expert_indices,
torch::Tensor& gating_output);
This diff is collapsed.
......@@ -48,8 +48,8 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
&rotary_embedding,
"Apply GPT-NeoX or GPT-J style rotary embedding to query and key");
#ifndef USE_ROCM
// Quantization ops
#ifndef USE_ROCM
ops.def("awq_gemm", &awq_gemm, "Quantized GEMM for AWQ");
ops.def("awq_dequantize", &awq_dequantize, "Dequantization for AWQ");
#endif
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment