Unverified Commit 4caf7044 authored by Ronen Schaffer's avatar Ronen Schaffer Committed by GitHub
Browse files

Include tokens from prompt phase in `counter_generation_tokens` (#2802)

parent 6f32cddf
...@@ -52,6 +52,9 @@ steps: ...@@ -52,6 +52,9 @@ steps:
- label: LoRA Test - label: LoRA Test
command: pytest -v -s lora command: pytest -v -s lora
- label: Metrics Test
command: pytest -v -s metrics
- label: Benchmarks - label: Benchmarks
working_dir: "/vllm-workspace/.buildkite" working_dir: "/vllm-workspace/.buildkite"
commands: commands:
......
...@@ -9,13 +9,16 @@ MODELS = [ ...@@ -9,13 +9,16 @@ MODELS = [
@pytest.mark.parametrize("model", MODELS) @pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"]) @pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128]) @pytest.mark.parametrize("max_tokens", [128])
def test_metrics( def test_metric_counter_prompt_tokens(
vllm_runner, vllm_runner,
example_prompts, example_prompts,
model: str, model: str,
dtype: str, dtype: str,
max_tokens: int, max_tokens: int,
) -> None: ) -> None:
# Reset metric
vllm.engine.metrics.counter_prompt_tokens.set_value({}, 0)
vllm_model = vllm_runner(model, dtype=dtype, disable_log_stats=False) vllm_model = vllm_runner(model, dtype=dtype, disable_log_stats=False)
tokenizer = vllm_model.model.get_tokenizer() tokenizer = vllm_model.model.get_tokenizer()
prompt_token_counts = [len(tokenizer.encode(p)) for p in example_prompts] prompt_token_counts = [len(tokenizer.encode(p)) for p in example_prompts]
...@@ -31,3 +34,32 @@ def test_metrics( ...@@ -31,3 +34,32 @@ def test_metrics(
assert vllm_prompt_token_count == metric_count, ( assert vllm_prompt_token_count == metric_count, (
f"prompt token count: {vllm_prompt_token_count!r}\nmetric: {metric_count!r}" f"prompt token count: {vllm_prompt_token_count!r}\nmetric: {metric_count!r}"
) )
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["float"])
@pytest.mark.parametrize("max_tokens", [128])
def test_metric_counter_generation_tokens(
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
# Reset metric
vllm.engine.metrics.counter_generation_tokens.set_value({}, 0)
vllm_model = vllm_runner(model, dtype=dtype, disable_log_stats=False)
vllm_outputs = vllm_model.generate_greedy(example_prompts, max_tokens)
tokenizer = vllm_model.model.get_tokenizer()
metric_count = vllm.engine.metrics.counter_generation_tokens.get_value({})
vllm_generation_count = 0
for i in range(len(example_prompts)):
vllm_output_ids, vllm_output_str = vllm_outputs[i]
prompt_ids = tokenizer.encode(example_prompts[i])
# vllm_output_ids contains both prompt tokens and generation tokens. We're interested only in the count of the generation tokens.
vllm_generation_count += len(vllm_output_ids) - len(prompt_ids)
assert vllm_generation_count == metric_count, (
f"generation token count: {vllm_generation_count!r}\nmetric: {metric_count!r}"
)
...@@ -872,6 +872,9 @@ class LLMEngine: ...@@ -872,6 +872,9 @@ class LLMEngine:
num_prompt_tokens = sum( num_prompt_tokens = sum(
len(seq_group.prompt_token_ids) len(seq_group.prompt_token_ids)
for seq_group in scheduler_outputs.scheduled_seq_groups) for seq_group in scheduler_outputs.scheduled_seq_groups)
num_generation_tokens = sum(
seq_group.num_seqs()
for seq_group in scheduler_outputs.scheduled_seq_groups)
else: else:
num_generation_tokens = scheduler_outputs.num_batched_tokens num_generation_tokens = scheduler_outputs.num_batched_tokens
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment