Unverified Commit 436e523b authored by Woosuk Kwon's avatar Woosuk Kwon Committed by GitHub
Browse files

Refactor attention kernels (#53)

parent 27f1410d
#pragma once
#include "attention_generic.cuh"
#include "dtype_float16.cuh"
#include "dtype_float32.cuh"
#pragma once
#include <stdint.h>
namespace cacheflow {
// A vector type to store Q, K, V elements.
template<typename T, int VEC_SIZE>
struct Vec {};
// A vector type to store FP32 accumulators.
template<typename T>
struct FloatVec {};
// Template vector operations.
template<typename Acc, typename A, typename B>
inline __device__ Acc mul(A a, B b);
template<typename T>
inline __device__ float sum(T v);
template<typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<T, T, T>(a, b));
}
template<typename A, typename T>
inline __device__ float dot(T a, T b) {
return sum(mul<A, T, T>(a, b));
}
template<typename T>
inline __device__ void zero(T& dst) {
constexpr int WORDS = sizeof(T) / 4;
union {
T raw;
uint32_t words[WORDS];
} tmp;
#pragma unroll
for (int ii = 0; ii < WORDS; ++ii) {
tmp.words[ii] = 0u;
}
dst = tmp.raw;
}
} // namespace cacheflow
#pragma once
#include "attention_dtypes.cuh"
#include <float.h>
#include <type_traits>
namespace cacheflow {
// Q*K^T operation.
template<int THREAD_GROUP_SIZE, typename Vec, int N>
inline __device__ float qk_dot_(const Vec (&q)[N], const Vec (&k)[N]) {
using A_vec = typename FloatVec<Vec>::Type;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
A_vec qk_vec = mul<A_vec, Vec, Vec>(q[0], k[0]);
#pragma unroll
for (int ii = 1; ii < N; ++ii) {
qk_vec = fma(q[ii], k[ii], qk_vec);
}
// Finalize the reduction across lanes.
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREAD_GROUP_SIZE / 2; mask >= 1; mask /= 2) {
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
}
return qk;
}
template<typename T, int THREAD_GROUP_SIZE>
struct Qk_dot {
template<typename Vec, int N>
static inline __device__ float dot(const Vec (&q)[N], const Vec (&k)[N]) {
return qk_dot_<THREAD_GROUP_SIZE>(q, k);
}
};
} // namespace cacheflow
#pragma once
#include "attention_generic.cuh"
#include "dtype_float32.cuh"
#include <stdint.h>
namespace cacheflow {
// FP16 vector types for Q, K, V.
template<>
struct Vec<uint16_t, 1> {
using Type = uint16_t;
};
template<>
struct Vec<uint16_t, 2> {
using Type = uint32_t;
};
template<>
struct Vec<uint16_t, 4> {
using Type = uint2;
};
template<>
struct Vec<uint16_t, 8> {
using Type = uint4;
};
// FP32 accumulator vector types corresponding to Vec.
template<>
struct FloatVec<uint16_t> {
using Type = float;
};
template<>
struct FloatVec<uint32_t> {
using Type = float2;
};
template<>
struct FloatVec<uint2> {
using Type = Float4_;
};
template<>
struct FloatVec<uint4> {
using Type = Float8_;
};
// Utility functions for type conversions.
inline __device__ uint32_t h0_h0(uint16_t a) {
uint32_t b;
asm volatile("mov.b32 %0, {%1, %1};" : "=r"(b) : "h"(a));
return b;
}
inline __device__ float half_to_float(uint16_t h) {
float f;
asm volatile("cvt.f32.f16 %0, %1;\n" : "=f"(f) : "h"(h));
return f;
}
inline __device__ float2 half2_to_float2(uint32_t v) {
uint16_t lo, hi;
asm volatile("mov.b32 {%0, %1}, %2;\n" : "=h"(lo), "=h"(hi) : "r"(v));
return make_float2(half_to_float(lo), half_to_float(hi));
}
inline __device__ uint16_t float_to_half(float f) {
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f));
return tmp.u16[0];
}
inline __device__ uint32_t float2_to_half2(float2 f) {
union {
uint32_t u32;
uint16_t u16[2];
} tmp;
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
asm volatile("cvt.rn.f16x2.f32 %0, %1, %2;\n" : "=r"(tmp.u32) : "f"(f.y), "f"(f.x));
#else
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[0]) : "f"(f.x));
asm volatile("cvt.rn.f16.f32 %0, %1;\n" : "=h"(tmp.u16[1]) : "f"(f.y));
#endif
return tmp.u32;
}
// Vector addition.
inline __device__ uint16_t add(uint16_t a, uint16_t b) {
uint16_t c;
asm volatile("add.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
return c;
}
inline __device__ uint32_t add(uint32_t a, uint32_t b) {
uint32_t c;
asm volatile("add.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
inline __device__ uint2 add(uint2 a, uint2 b) {
uint2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ uint4 add(uint4 a, uint4 b) {
uint4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
inline __device__ float2 add(uint32_t a, float2 fb) {
float2 fa = half2_to_float2(a);
return add(fa, fb);
}
inline __device__ Float4_ add(uint2 a, Float4_ fb) {
Float4_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
return fc;
}
inline __device__ Float8_ add(uint4 a, Float8_ fb) {
Float8_ fc;
fc.x = add(a.x, fb.x);
fc.y = add(a.y, fb.y);
fc.z = add(a.z, fb.z);
fc.w = add(a.w, fb.w);
return fc;
}
// Vector multiplication.
template<>
inline __device__ uint16_t mul(uint16_t a, uint16_t b) {
uint16_t c;
asm volatile("mul.f16 %0, %1, %2;\n" : "=h"(c) : "h"(a), "h"(b));
return c;
}
template<>
inline __device__ uint32_t mul(uint32_t a, uint32_t b) {
uint32_t c;
asm volatile("mul.f16x2 %0, %1, %2;\n" : "=r"(c) : "r"(a), "r"(b));
return c;
}
template<>
inline __device__ uint32_t mul(uint16_t a, uint32_t b) {
return mul<uint32_t, uint32_t, uint32_t>(h0_h0(a), b);
}
template<>
inline __device__ uint2 mul(uint2 a, uint2 b) {
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
return c;
}
template<>
inline __device__ uint2 mul(uint16_t a, uint2 b) {
uint32_t s = h0_h0(a);
uint2 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
return c;
}
template<>
inline __device__ uint4 mul(uint4 a, uint4 b) {
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(a.x, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(a.y, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(a.z, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(a.w, b.w);
return c;
}
template<>
inline __device__ uint4 mul(uint16_t a, uint4 b) {
uint32_t s = h0_h0(a);
uint4 c;
c.x = mul<uint32_t, uint32_t, uint32_t>(s, b.x);
c.y = mul<uint32_t, uint32_t, uint32_t>(s, b.y);
c.z = mul<uint32_t, uint32_t, uint32_t>(s, b.z);
c.w = mul<uint32_t, uint32_t, uint32_t>(s, b.w);
return c;
}
template<>
inline __device__ float mul(uint16_t a, uint16_t b) {
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb;
}
template<>
inline __device__ float2 mul(uint32_t a, uint32_t b) {
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return mul<float2, float2, float2>(fa, fb);
}
template<>
inline __device__ float2 mul(uint16_t a, uint32_t b) {
return mul<float2, uint32_t, uint32_t>(h0_h0(a), b);
}
template<>
inline __device__ Float4_ mul(uint2 a, uint2 b) {
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
return fc;
}
template<>
inline __device__ Float4_ mul(uint16_t a, uint2 b) {
uint32_t s = h0_h0(a);
Float4_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
return fc;
}
template<>
inline __device__ Float8_ mul(uint4 a, uint4 b) {
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(a.x, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(a.y, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(a.z, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(a.w, b.w);
return fc;
}
template<>
inline __device__ Float8_ mul(uint16_t a, uint4 b) {
uint32_t s = h0_h0(a);
Float8_ fc;
fc.x = mul<float2, uint32_t, uint32_t>(s, b.x);
fc.y = mul<float2, uint32_t, uint32_t>(s, b.y);
fc.z = mul<float2, uint32_t, uint32_t>(s, b.z);
fc.w = mul<float2, uint32_t, uint32_t>(s, b.w);
return fc;
}
// Vector fused multiply-add.
inline __device__ uint32_t fma(uint32_t a, uint32_t b, uint32_t c) {
uint32_t d;
asm volatile("fma.rn.f16x2 %0, %1, %2, %3;\n" : "=r"(d) : "r"(a), "r"(b), "r"(c));
return d;
}
inline __device__ uint32_t fma(uint16_t a, uint32_t b, uint32_t c) {
return fma(h0_h0(a), b, c);
}
inline __device__ uint2 fma(uint2 a, uint2 b, uint2 c) {
uint2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ uint2 fma(uint16_t a, uint2 b, uint2 c) {
uint32_t s = h0_h0(a);
uint2 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
return d;
}
inline __device__ uint4 fma(uint4 a, uint4 b, uint4 c) {
uint4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ uint4 fma(uint16_t a, uint4 b, uint4 c) {
uint32_t s = h0_h0(a);
uint4 d;
d.x = fma(s, b.x, c.x);
d.y = fma(s, b.y, c.y);
d.z = fma(s, b.z, c.z);
d.w = fma(s, b.w, c.w);
return d;
}
inline __device__ float fma(uint16_t a, uint16_t b, float fc) {
float fa = half_to_float(a);
float fb = half_to_float(b);
return fa * fb + fc;
}
inline __device__ float2 fma(uint32_t a, uint32_t b, float2 fc) {
float2 fa = half2_to_float2(a);
float2 fb = half2_to_float2(b);
return fma(fa, fb, fc);
}
inline __device__ float2 fma(uint16_t a, uint32_t b, float2 fc) {
return fma(h0_h0(a), b, fc);
}
inline __device__ Float4_ fma(uint2 a, uint2 b, Float4_ fc) {
Float4_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
return fd;
}
inline __device__ Float4_ fma(uint16_t a, uint2 b, Float4_ fc) {
uint32_t s = h0_h0(a);
Float4_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
return fd;
}
inline __device__ Float8_ fma(uint4 a, uint4 b, Float8_ fc) {
Float8_ fd;
fd.x = fma(a.x, b.x, fc.x);
fd.y = fma(a.y, b.y, fc.y);
fd.z = fma(a.z, b.z, fc.z);
fd.w = fma(a.w, b.w, fc.w);
return fd;
}
inline __device__ Float8_ fma(uint16_t a, uint4 b, Float8_ fc) {
uint32_t s = h0_h0(a);
Float8_ fd;
fd.x = fma(s, b.x, fc.x);
fd.y = fma(s, b.y, fc.y);
fd.z = fma(s, b.z, fc.z);
fd.w = fma(s, b.w, fc.w);
return fd;
}
// Vector sum.
template<>
inline __device__ float sum(uint16_t v) {
return half_to_float(v);
}
template<>
inline __device__ float sum(uint32_t v) {
float2 tmp = half2_to_float2(v);
return tmp.x + tmp.y;
}
template<>
inline __device__ float sum(uint2 v) {
uint32_t c = add(v.x, v.y);
return sum(c);
}
template<>
inline __device__ float sum(uint4 v) {
uint32_t c = add(v.x, v.y);
c = add(c, v.z);
c = add(c, v.w);
return sum(c);
}
// Zero-out a vector.
inline __device__ void zero(uint16_t& dst) {
dst = uint16_t(0);
}
// From float32 to float16.
inline __device__ void from_float(uint16_t& dst, float src) {
dst = float_to_half(src);
}
inline __device__ void from_float(uint32_t& dst, float2 src) {
dst = float2_to_half2(src);
}
inline __device__ void from_float(uint2& dst, Float4_ src) {
dst.x = float2_to_half2(src.x);
dst.y = float2_to_half2(src.y);
}
inline __device__ void from_float(uint4& dst, Float8_ src) {
dst.x = float2_to_half2(src.x);
dst.y = float2_to_half2(src.y);
dst.z = float2_to_half2(src.z);
dst.w = float2_to_half2(src.w);
}
// From float16 to float32.
inline __device__ float to_float(uint16_t u) {
return half_to_float(u);
}
inline __device__ float2 to_float(uint32_t u) {
return half2_to_float2(u);
}
inline __device__ Float4_ to_float(uint2 u) {
Float4_ tmp;
tmp.x = half2_to_float2(u.x);
tmp.y = half2_to_float2(u.y);
return tmp;
}
inline __device__ Float8_ to_float(uint4 u) {
Float8_ tmp;
tmp.x = half2_to_float2(u.x);
tmp.y = half2_to_float2(u.y);
tmp.z = half2_to_float2(u.z);
tmp.w = half2_to_float2(u.w);
return tmp;
}
} // namespace cacheflow
#pragma once
#include "attention_generic.cuh"
#include <stdint.h>
namespace cacheflow {
// Define FP32 vector data types.
struct Float4_ {
float2 x;
float2 y;
};
struct Float8_ {
float2 x;
float2 y;
float2 z;
float2 w;
};
// FP32 vector types for Q, K, V.
template<>
struct Vec<float, 1> {
using Type = float;
};
template<>
struct Vec<float, 2> {
using Type = float2;
};
template<>
struct Vec<float, 4> {
using Type = float4;
};
// FP32 accumulator vector types corresponding to Vec.
template<>
struct FloatVec<float> {
using Type = float;
};
template<>
struct FloatVec<float2> {
using Type = float2;
};
template<>
struct FloatVec<float4> {
using Type = float4;
};
// Vector addition.
inline __device__ float add(float a, float b) {
return a + b;
}
inline __device__ float2 add(float2 a, float2 b) {
float2 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
return c;
}
inline __device__ float4 add(float4 a, float4 b) {
float4 c;
c.x = add(a.x, b.x);
c.y = add(a.y, b.y);
c.z = add(a.z, b.z);
c.w = add(a.w, b.w);
return c;
}
// Vector multiplication.
template<>
inline __device__ float mul<float, float>(float a, float b) {
return a * b;
}
template<>
inline __device__ float2 mul(float2 a, float2 b) {
float2 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
return c;
}
template<>
inline __device__ float2 mul(float a, float2 b) {
float2 c;
c.x = a * b.x;
c.y = a * b.y;
return c;
}
template<>
inline __device__ float4 mul(float4 a, float4 b) {
float4 c;
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
return c;
}
template<>
inline __device__ float4 mul(float a, float4 b) {
float4 c;
c.x = a * b.x;
c.y = a * b.y;
c.z = a * b.z;
c.w = a * b.w;
return c;
}
// Vector fused multiply-add.
inline __device__ float fma(float a, float b, float c) {
return a * b + c;
}
inline __device__ float2 fma(float2 a, float2 b, float2 c) {
float2 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
return d;
}
inline __device__ float2 fma(float a, float2 b, float2 c) {
float2 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
inline __device__ float4 fma(float4 a, float4 b, float4 c) {
float4 d;
d.x = fma(a.x, b.x, c.x);
d.y = fma(a.y, b.y, c.y);
d.z = fma(a.z, b.z, c.z);
d.w = fma(a.w, b.w, c.w);
return d;
}
inline __device__ float4 fma(float a, float4 b, float4 c) {
float4 d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
inline __device__ Float4_ fma(float a, Float4_ b, Float4_ c) {
Float4_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
return d;
}
inline __device__ Float8_ fma(float a, Float8_ b, Float8_ c) {
Float8_ d;
d.x = fma(a, b.x, c.x);
d.y = fma(a, b.y, c.y);
d.z = fma(a, b.z, c.z);
d.w = fma(a, b.w, c.w);
return d;
}
// Vector sum.
template<>
inline __device__ float sum(float v) {
return v;
}
template<>
inline __device__ float sum(float2 v) {
return v.x + v.y;
}
template<>
inline __device__ float sum(float4 v) {
return v.x + v.y + v.z + v.w;
}
template<>
inline __device__ float sum(Float4_ v) {
return v.x.x + v.x.y + v.y.x + v.y.y;
}
template<>
inline __device__ float sum(Float8_ v) {
return v.x.x + v.x.y + v.y.x + v.y.y + v.z.x + v.z.y + v.w.x + v.w.y;
}
// Vector dot product.
inline __device__ float dot(float a, float b) {
return a * b;
}
inline __device__ float dot(float2 a, float2 b) {
float2 c = mul<float2, float2, float2>(a, b);
return c.x + c.y;
}
inline __device__ float dot(Float4_ a, Float4_ b) {
float2 acc = mul<float2, float2, float2>(a.x, b.x);
acc = fma(a.y, b.y, acc);
return acc.x + acc.y;
}
inline __device__ float dot(Float8_ a, Float8_ b) {
float2 acc = mul<float2, float2, float2>(a.x, b.x);
acc = fma(a.y, b.y, acc);
acc = fma(a.z, b.z, acc);
acc = fma(a.w, b.w, acc);
return acc.x + acc.y;
}
// From float to float.
inline __device__ void from_float(float& dst, float src) {
dst = src;
}
inline __device__ void from_float(float2& dst, float2 src) {
dst = src;
}
inline __device__ void from_float(float4& dst, float4 src) {
dst = src;
}
// From float to float.
inline __device__ float to_float(float u) {
return u;
}
inline __device__ float2 to_float(float2 u) {
return u;
}
inline __device__ float4 to_float(float4 u) {
return u;
}
inline __device__ Float4_ to_float(Float4_ u) {
return u;
}
inline __device__ Float8_ to_float(Float8_ u) {
return u;
}
} // namespace cacheflow
#pragma once
#include "cuda_primitives.h"
#include <float.h>
#include <type_traits>
#define MMHA_USE_FP32_ACUM_FOR_FMA
#define MMHA_USE_FP32_ACUM_FOR_OUT
namespace cacheflow {
// A vector type to store Q, K, V elements.
template<typename T, int VEC_SIZE>
struct Vec {};
template<>
struct Vec<float, 1> {
using Type = float;
};
template<>
struct Vec<float, 2> {
using Type = float2;
};
template<>
struct Vec<float, 4> {
using Type = float4;
};
template<>
struct Vec<uint16_t, 1> {
using Type = uint16_t;
};
template<>
struct Vec<uint16_t, 2> {
using Type = uint32_t;
};
template<>
struct Vec<uint16_t, 4> {
using Type = uint2;
};
template<>
struct Vec<uint16_t, 8> {
using Type = uint4;
};
template<typename T>
struct FloatVec {};
template<>
struct FloatVec<float> {
using Type = float;
};
template<>
struct FloatVec<float2> {
using Type = float2;
};
template<>
struct FloatVec<float4> {
using Type = float4;
};
template<>
struct FloatVec<uint16_t> {
using Type = float;
};
template<>
struct FloatVec<uint32_t> {
using Type = float2;
};
template<>
struct FloatVec<uint2> {
using Type = Float4_;
};
template<>
struct FloatVec<uint4> {
using Type = Float8_;
};
template<int THREADS_PER_KEY, typename K_vec, int N>
inline __device__ float qk_dot_(const K_vec (&q)[N], const K_vec (&k)[N])
{
using K_vec_acum = typename FloatVec<K_vec>::Type;
// Compute the parallel products for Q*K^T (treat vector lanes separately).
K_vec_acum qk_vec = mul<K_vec_acum, K_vec, K_vec>(q[0], k[0]);
#pragma unroll
for (int ii = 1; ii < N; ++ii) {
qk_vec = fma(q[ii], k[ii], qk_vec);
}
// Finalize the reduction across lanes.
float qk = sum(qk_vec);
#pragma unroll
for (int mask = THREADS_PER_KEY / 2; mask >= 1; mask /= 2) {
qk += __shfl_xor_sync(uint32_t(-1), qk, mask);
}
return qk;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T, int THREADS_PER_KEY>
struct Qk_dot {
template<typename K_vec, int N>
static inline __device__ float dot(const K_vec (&q)[N], const K_vec (&k)[N])
{
return qk_dot_<THREADS_PER_KEY>(q, k);
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ float4 hmma_fp32(const uint2& a, uint32_t b)
{
float4 c;
float zero = 0.f;
asm volatile("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 \n"
" {%0, %1, %2, %3}, \n"
" {%4, %5}, \n"
" {%6}, \n"
" {%7, %7, %7, %7}; \n"
: "=f"(c.x), "=f"(c.y), "=f"(c.z), "=f"(c.w)
: "r"(a.x) "r"(a.y), "r"(b), "f"(zero));
return c;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<int N>
inline __device__ float qk_hmma_dot_(const uint32_t (&q)[N], const uint32_t (&k)[N])
{
#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 750
using K_vec_acum = typename FloatVec<uint32_t>::Type;
K_vec_acum qk_vec = mul<K_vec_acum, uint32_t, uint32_t>(q[0], k[0]);
#pragma unroll
for (int ii = 1; ii < N; ++ii) {
qk_vec = fma(q[ii], k[ii], qk_vec);
}
#ifdef MMHA_USE_FP32_ACUM_FOR_FMA
uint32_t qk_vec_ = float2_to_half2(qk_vec);
return hmma_fp32(make_uint2(qk_vec_, 0u), 0x3c003c00u).x;
#else
return hmma_fp32(make_uint2(qk_vec, 0u), 0x3c003c00u).x;
#endif
#else
return 0.f;
#endif
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<>
struct Qk_dot<uint16_t, 4> {
template<int N>
static inline __device__ float dot(const uint32_t (&q)[N], const uint32_t (&k)[N])
{
#if __CUDA_ARCH__ >= 750 && defined(MMHA_USE_HMMA_FOR_REDUCTION)
return qk_hmma_dot_(q, k);
#else
return qk_dot_<4>(q, k);
#endif // defined MMHA_USE_HMMA_FOR_REDUCTION
}
};
} // namespace cacheflow
#undef MMHA_USE_FP32_ACUM_FOR_FMA
#undef MMHA_USE_FP32_ACUM_FOR_OUT
This diff is collapsed.
#include <torch/extension.h> #include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h> #include <ATen/cuda/CUDAContext.h>
#include "reduction_utils.h" #include "reduction_utils.cuh"
namespace cacheflow { namespace cacheflow {
......
#pragma once
namespace cacheflow {
template<typename T>
__inline__ __device__ T warpReduceSum(T val) {
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1)
val += __shfl_xor_sync(0xffffffff, val, mask, 32);
return val;
}
/* Calculate the sum of all elements in a block */
template<typename T>
__inline__ __device__ T blockReduceSum(T val) {
static __shared__ T shared[32];
int lane = threadIdx.x & 0x1f;
int wid = threadIdx.x >> 5;
val = warpReduceSum<T>(val);
if (lane == 0)
shared[wid] = val;
__syncthreads();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
val = warpReduceSum<T>(val);
return val;
}
} // namespace cacheflow
#pragma once
namespace cacheflow {
template<int WARPS_PER_BLOCK, int WARP_SIZE = 32>
inline __device__ float block_sum(float* red_smem, float sum)
{
// Decompose the thread index into warp / lane.
int warp = threadIdx.x / WARP_SIZE;
int lane = threadIdx.x % WARP_SIZE;
// Compute the sum per warp.
#pragma unroll
for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
}
// Warp leaders store the data to shared memory.
if (lane == 0) {
red_smem[warp] = sum;
}
// Make sure the data is in shared memory.
__syncthreads();
// The warps compute the final sums.
if (lane < WARPS_PER_BLOCK) {
sum = red_smem[lane];
}
// Parallel reduction inside the warp.
#pragma unroll
for (int mask = WARPS_PER_BLOCK / 2; mask >= 1; mask /= 2) {
sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
}
// Broadcast to other threads.
return __shfl_sync(uint32_t(-1), sum, 0);
}
#define FINAL_MASK 0xffffffff
template<typename T>
__inline__ __device__ T warpReduceSum(T val)
{
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1)
val += __shfl_xor_sync(FINAL_MASK, val, mask, 32);
return val;
}
/* Calculate the sum of all elements in a block */
template<typename T>
__inline__ __device__ T blockReduceSum(T val)
{
static __shared__ T shared[32];
int lane = threadIdx.x & 0x1f;
int wid = threadIdx.x >> 5;
val = warpReduceSum<T>(val);
if (lane == 0)
shared[wid] = val;
__syncthreads();
// Modify from blockDim.x << 5 to blockDim.x / 32. to prevent
// blockDim.x is not divided by 32
val = (threadIdx.x < (blockDim.x / 32.f)) ? shared[lane] : (T)(0.0f);
val = warpReduceSum<T>(val);
return val;
}
} // namespace cacheflow
...@@ -18,7 +18,7 @@ ext_modules.append(cache_extension) ...@@ -18,7 +18,7 @@ ext_modules.append(cache_extension)
# Attention kernels. # Attention kernels.
attention_extension = cpp_extension.CUDAExtension( attention_extension = cpp_extension.CUDAExtension(
name='cacheflow.attention_ops', name='cacheflow.attention_ops',
sources=['csrc/attention.cpp', 'csrc/attention_kernels.cu'], sources=['csrc/attention.cpp', 'csrc/attention/attention_kernels.cu'],
extra_compile_args={'cxx': CXX_FLAGS, 'nvcc': NVCC_FLAGS}, extra_compile_args={'cxx': CXX_FLAGS, 'nvcc': NVCC_FLAGS},
) )
ext_modules.append(attention_extension) ext_modules.append(attention_extension)
......
...@@ -271,78 +271,6 @@ def test_multi_query_kv_attention( ...@@ -271,78 +271,6 @@ def test_multi_query_kv_attention(
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5) assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
def test_multi_query_cached_kv_attention(
num_queries: int,
num_heads: int,
head_size: int,
block_size: int,
num_blocks: int,
dtype: torch.dtype,
) -> None:
query_lens = random.sample(range(1, MAX_SEQ_LEN), num_queries)
cu_query_lens = [0]
for query_len in query_lens:
cu_query_lens.append(cu_query_lens[-1] + query_len)
num_total_tokens = cu_query_lens[-1]
qkv = torch.randn(
num_total_tokens, 3, num_heads, head_size, dtype=dtype, device='cuda')
query, _, _ = qkv.unbind(dim=1)
x = 16 // torch.tensor([], dtype=dtype).element_size()
key_block_shape = (num_heads, head_size // x, block_size, x)
key_cache = torch.randn(
size=(num_blocks, *key_block_shape), dtype=dtype, device='cuda')
value_block_shape = (num_heads, head_size, block_size)
value_cache = torch.randn(
size=(num_blocks, *value_block_shape), dtype=dtype, device='cuda')
cu_query_lens = torch.tensor(cu_query_lens, dtype=torch.int, device='cuda')
context_lens = [
query_len + random.randint(0, MAX_SEQ_LEN - query_len)
for query_len in query_lens
]
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, dtype=torch.int, device='cuda')
max_num_blocks_per_seq = (max_context_len + block_size - 1) // block_size
block_tables = []
for _ in range(num_queries):
block_table = [
random.randint(0, num_blocks - 1)
for _ in range(max_num_blocks_per_seq)
]
block_tables.append(block_table)
block_tables = torch.tensor(block_tables, dtype=torch.int, device='cuda')
scale = float(1.0 / (head_size ** 0.5))
output = torch.empty(
num_total_tokens, num_heads, head_size, dtype=dtype, device='cuda')
attention_ops.multi_query_cached_kv_attention(
cu_query_lens,
output,
query,
key_cache,
value_cache,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
)
ref_output = ref_multi_query_cached_kv_attention(
cu_query_lens,
query,
key_cache,
value_cache,
block_tables,
context_lens,
dtype,
)
assert torch.allclose(output, ref_output, atol=1e-3, rtol=1e-5)
@torch.inference_mode() @torch.inference_mode()
def test_attention(seed: int) -> None: def test_attention(seed: int) -> None:
# NOTE(woosuk): Even when the seed is fixed, there is a chance that # NOTE(woosuk): Even when the seed is fixed, there is a chance that
...@@ -364,24 +292,6 @@ def test_attention(seed: int) -> None: ...@@ -364,24 +292,6 @@ def test_attention(seed: int) -> None:
dtype=dtype, dtype=dtype,
) )
# NOTE(siyuan): Same as above. Re-run the test if it fails. Also
# note that the test is also more likely to fail due to the much
# larger amount of tokens in the input may increase the variance.
for dtype in [torch.half, torch.float]:
for block_size in [8, 16, 32]:
for head_size in [32, 64, 80, 96, 128, 160, 192, 256]:
print(f'Testing multi_query_cached_kv_attention with '
f'dtype={dtype}, block_size={block_size}, '
f'head_size={head_size}')
test_multi_query_cached_kv_attention(
num_queries=11,
num_heads=3,
head_size=head_size,
block_size=block_size,
num_blocks=1024,
dtype=dtype,
)
# NOTE(woosuk): FlashAttention does not support FP32. # NOTE(woosuk): FlashAttention does not support FP32.
for dtype in [torch.half]: for dtype in [torch.half]:
# NOTE(woosuk): FlashAttention does not support head_size > 128. # NOTE(woosuk): FlashAttention does not support head_size > 128.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment