Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
norm
vllm
Commits
21b3671b
Unverified
Commit
21b3671b
authored
Apr 04, 2023
by
Siyuan (Ryans) Zhuang
Committed by
GitHub
Apr 04, 2023
Browse files
Basic attention kernel that supports cached KV + (multi-)prompts (#24)
parent
897cb2ae
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
622 additions
and
0 deletions
+622
-0
csrc/attention.cpp
csrc/attention.cpp
+16
-0
csrc/attention_kernels.cu
csrc/attention_kernels.cu
+463
-0
tests/kernels/attention.py
tests/kernels/attention.py
+143
-0
No files found.
csrc/attention.cpp
View file @
21b3671b
...
...
@@ -11,9 +11,25 @@ void single_query_cached_kv_attention(
int
block_size
,
int
max_context_len
);
void
multi_query_cached_kv_attention
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
block_size
,
int
max_context_len
);
PYBIND11_MODULE
(
TORCH_EXTENSION_NAME
,
m
)
{
m
.
def
(
"single_query_cached_kv_attention"
,
&
single_query_cached_kv_attention
,
"Compute the attention between an input query and the cached key/value tensors"
);
m
.
def
(
"multi_query_cached_kv_attention"
,
&
multi_query_cached_kv_attention
,
"Compute the attention between multiple input queries and the cached key/value tensors"
);
}
csrc/attention_kernels.cu
View file @
21b3671b
...
...
@@ -254,6 +254,287 @@ __global__ void single_query_cached_kv_attention_kernel(
}
}
// Grid: (num_heads, num_query_tokens).
template
<
typename
scalar_t
,
int
HEAD_SIZE
,
int
BLOCK_SIZE
,
int
NUM_THREADS
>
__device__
void
multi_query_cached_kv_attention_kernel_unoptimized_
(
scalar_t
*
__restrict__
out
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
q
,
// [num_seqs, num_heads, head_size]
const
int
seq_start_idx
,
const
int
seq_len
,
const
scalar_t
*
__restrict__
k_cache
,
// [num_blocks, num_heads, head_size/x, block_size, x]
const
scalar_t
*
__restrict__
v_cache
,
// [num_blocks, num_heads, head_size, block_size]
const
float
scale
,
const
int
*
__restrict__
block_table
,
// [num_seqs, max_num_blocks_per_seq]
const
int
context_len
,
const
int
max_num_blocks_per_seq
)
{
constexpr
int
THREAD_GROUP_SIZE
=
WARP_SIZE
/
BLOCK_SIZE
;
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
const
int
thread_idx
=
threadIdx
.
x
;
const
int
warp_idx
=
thread_idx
/
WARP_SIZE
;
const
int
lane
=
thread_idx
%
WARP_SIZE
;
const
int
head_idx
=
blockIdx
.
x
;
const
int
num_heads
=
gridDim
.
x
;
const
int
seq_idx
=
blockIdx
.
y
;
// A vector type to store a part of a key or a query.
// The vector size is configured in such a way that the threads in a thread group
// fetch or comput 16 bytes at a time.
// For example, if the size of a thread group is 4 and the data type is half,
// then the vector size is 16 / (4 * sizeof(half)) == 2.
constexpr
int
VEC_SIZE
=
16
/
(
THREAD_GROUP_SIZE
*
sizeof
(
scalar_t
));
using
K_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
using
Q_vec
=
typename
Vec
<
scalar_t
,
VEC_SIZE
>::
Type
;
constexpr
int
NUM_ELEMS_PER_THREAD
=
HEAD_SIZE
/
THREAD_GROUP_SIZE
;
constexpr
int
NUM_VECS_PER_THREAD
=
NUM_ELEMS_PER_THREAD
/
VEC_SIZE
;
const
int
thread_group_idx
=
thread_idx
/
THREAD_GROUP_SIZE
;
const
int
thread_group_offset
=
thread_idx
%
THREAD_GROUP_SIZE
;
// Load the query to registers.
// Each thread in a thread group has a different part of the query.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
// th vectors of the query, and so on.
const
scalar_t
*
q_ptr
=
q
+
seq_idx
*
num_heads
*
HEAD_SIZE
+
head_idx
*
HEAD_SIZE
;
Q_vec
q_vecs
[
NUM_VECS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_VECS_PER_THREAD
;
i
++
)
{
const
int
vec_idx
=
thread_group_offset
+
i
*
THREAD_GROUP_SIZE
;
q_vecs
[
i
]
=
*
reinterpret_cast
<
const
Q_vec
*>
(
q_ptr
+
vec_idx
*
VEC_SIZE
);
}
// Memory planning.
extern
__shared__
char
shared_mem
[];
// NOTE(woosuk): We use FP32 logits and accumulation.
float
*
logits
=
reinterpret_cast
<
float
*>
(
shared_mem
);
// Workspace for reduction.
__shared__
float
red_smem
[
2
*
NUM_WARPS
];
// x == THREAD_GROUP_SIZE * VEC_SIZE
// Each thread group fetches x elements from the key at a time.
constexpr
int
x
=
16
/
sizeof
(
scalar_t
);
float
qk_max
=
-
FLT_MAX
;
const
int
num_blocks
=
(
context_len
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
;
const
int
mask_boundary
=
context_len
-
seq_len
+
1
+
(
seq_idx
-
seq_start_idx
);
// Iterate over the key blocks.
// Each warp fetches a block of keys for each iteration.
// Each thread group in a warp fetches a key from the block, and computes
// dot product with the query.
for
(
int
block_idx
=
warp_idx
;
block_idx
<
num_blocks
;
block_idx
+=
NUM_WARPS
)
{
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
thread_group_idx
%
BLOCK_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
// Load a key to registers.
// Each thread in a thread group has a different part of the key.
// For example, if the the thread group size is 4, then the first thread in the group
// has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
// vectors of the key, and so on.
K_vec
k_vecs
[
NUM_VECS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_VECS_PER_THREAD
;
i
++
)
{
const
scalar_t
*
k_ptr
=
k_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
+
physical_block_offset
*
x
;
const
int
vec_idx
=
thread_group_offset
+
i
*
THREAD_GROUP_SIZE
;
const
int
offset1
=
(
vec_idx
*
VEC_SIZE
)
/
x
;
const
int
offset2
=
(
vec_idx
*
VEC_SIZE
)
%
x
;
k_vecs
[
i
]
=
*
reinterpret_cast
<
const
K_vec
*>
(
k_ptr
+
offset1
*
BLOCK_SIZE
*
x
+
offset2
);
}
// Compute dot product.
// This includes a reduction across the threads in the same thread group.
const
float
qk
=
scale
*
Qk_dot
<
scalar_t
,
THREAD_GROUP_SIZE
>::
dot
(
q_vecs
,
k_vecs
);
const
bool
mask
=
token_idx
>=
mask_boundary
;
if
(
thread_group_offset
==
0
)
{
// Store the partial reductions to shared memory.
// NOTE(woosuk): It is required to zero out the masked logits.
logits
[
token_idx
]
=
mask
?
0.
f
:
qk
;
// Update the max value.
qk_max
=
mask
?
qk_max
:
fmaxf
(
qk_max
,
qk
);
}
}
// Perform reduction across the threads in the same warp to get the
// max qk value for each "warp" (not across the thread block yet).
// The 0-th thread of each thread group already has its max qk value.
#pragma unroll
for
(
int
mask
=
WARP_SIZE
/
2
;
mask
>=
THREAD_GROUP_SIZE
;
mask
/=
2
)
{
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
}
if
(
lane
==
0
)
{
red_smem
[
warp_idx
]
=
qk_max
;
}
__syncthreads
();
// TODO(woosuk): Refactor this part.
// Get the max qk value for the sequence.
qk_max
=
lane
<
NUM_WARPS
?
red_smem
[
lane
]
:
-
FLT_MAX
;
#pragma unroll
for
(
int
mask
=
NUM_WARPS
/
2
;
mask
>=
1
;
mask
/=
2
)
{
qk_max
=
fmaxf
(
qk_max
,
__shfl_xor_sync
(
uint32_t
(
-
1
),
qk_max
,
mask
));
}
// Broadcast the max qk value to all threads.
qk_max
=
__shfl_sync
(
uint32_t
(
-
1
),
qk_max
,
0
);
// Get the sum of the exp values.
float
exp_sum
=
0.
f
;
for
(
int
i
=
thread_idx
;
i
<
mask_boundary
;
i
+=
NUM_THREADS
)
{
float
val
=
__expf
(
logits
[
i
]
-
qk_max
);
logits
[
i
]
=
val
;
exp_sum
+=
val
;
}
exp_sum
=
block_sum
<
NUM_WARPS
>
(
&
red_smem
[
NUM_WARPS
],
exp_sum
);
// Compute softmax.
const
float
inv_sum
=
__fdividef
(
1.
f
,
exp_sum
+
1e-6
f
);
for
(
int
i
=
thread_idx
;
i
<
context_len
;
i
+=
NUM_THREADS
)
{
logits
[
i
]
*=
inv_sum
;
}
__syncthreads
();
// Each thread will fetch 16 bytes from the value cache at a time.
constexpr
int
V_VEC_SIZE
=
16
/
sizeof
(
scalar_t
);
using
V_vec
=
typename
Vec
<
scalar_t
,
V_VEC_SIZE
>::
Type
;
using
L_vec
=
typename
FloatVec
<
V_vec
>::
Type
;
constexpr
int
NUM_V_VECS_PER_ROW
=
BLOCK_SIZE
/
V_VEC_SIZE
;
constexpr
int
NUM_ROWS_PER_ITER
=
WARP_SIZE
/
NUM_V_VECS_PER_ROW
;
constexpr
int
NUM_ROWS_PER_THREAD
=
(
HEAD_SIZE
+
NUM_ROWS_PER_ITER
-
1
)
/
NUM_ROWS_PER_ITER
;
float
accs
[
NUM_ROWS_PER_THREAD
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
accs
[
i
]
=
0.
f
;
}
for
(
int
block_idx
=
warp_idx
;
block_idx
<
num_blocks
;
block_idx
+=
NUM_WARPS
)
{
const
int
physical_block_number
=
block_table
[
block_idx
];
const
int
physical_block_offset
=
(
lane
%
NUM_V_VECS_PER_ROW
)
*
V_VEC_SIZE
;
const
int
token_idx
=
block_idx
*
BLOCK_SIZE
+
physical_block_offset
;
L_vec
logits_vec
=
*
reinterpret_cast
<
L_vec
*>
(
logits
+
token_idx
);
const
scalar_t
*
v_ptr
=
v_cache
+
physical_block_number
*
num_heads
*
HEAD_SIZE
*
BLOCK_SIZE
+
head_idx
*
HEAD_SIZE
*
BLOCK_SIZE
;
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
)
{
const
int
offset
=
row_idx
*
BLOCK_SIZE
+
physical_block_offset
;
V_vec
v_vec
=
*
reinterpret_cast
<
const
V_vec
*>
(
v_ptr
+
offset
);
accs
[
i
]
+=
dot
(
logits_vec
,
cast_to_float
(
v_vec
));
}
}
}
// Perform reduction within each warp.
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
float
acc
=
accs
[
i
];
#pragma unroll
for
(
int
mask
=
NUM_V_VECS_PER_ROW
/
2
;
mask
>=
1
;
mask
/=
2
)
{
acc
+=
__shfl_xor_sync
(
uint32_t
(
-
1
),
acc
,
mask
);
}
accs
[
i
]
=
acc
;
}
// NOTE(woosuk): A barrier is required because the shared memory space for logits
// is reused for the output.
__syncthreads
();
// Perform reduction across warps.
float
*
out_smem
=
reinterpret_cast
<
float
*>
(
shared_mem
);
#pragma unroll
for
(
int
i
=
NUM_WARPS
;
i
>
1
;
i
/=
2
)
{
int
mid
=
i
/
2
;
// Upper warps write to shared memory.
if
(
warp_idx
>=
mid
&&
warp_idx
<
i
)
{
float
*
dst
=
&
out_smem
[(
warp_idx
-
mid
)
*
HEAD_SIZE
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
dst
[
row_idx
]
=
accs
[
i
];
}
}
}
__syncthreads
();
// Lower warps update the output.
if
(
warp_idx
<
mid
)
{
const
float
*
src
=
&
out_smem
[
warp_idx
*
HEAD_SIZE
];
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
accs
[
i
]
+=
src
[
row_idx
];
}
}
}
__syncthreads
();
}
// Write the final output.
if
(
warp_idx
==
0
)
{
scalar_t
*
out_ptr
=
out
+
seq_idx
*
num_heads
*
HEAD_SIZE
+
head_idx
*
HEAD_SIZE
;
#pragma unroll
for
(
int
i
=
0
;
i
<
NUM_ROWS_PER_THREAD
;
i
++
)
{
const
int
row_idx
=
lane
/
NUM_V_VECS_PER_ROW
+
i
*
NUM_ROWS_PER_ITER
;
if
(
row_idx
<
HEAD_SIZE
&&
lane
%
NUM_V_VECS_PER_ROW
==
0
)
{
convert_from_float
(
*
(
out_ptr
+
row_idx
),
accs
[
i
]);
}
}
}
}
// Grid: (num_heads, num_query_tokens).
template
<
typename
scalar_t
,
int
HEAD_SIZE
,
int
BLOCK_SIZE
,
int
NUM_THREADS
>
__global__
void
multi_query_cached_kv_attention_kernel
(
const
int
*
cu_query_lens
,
// [num_prompts+1]
const
int
*
seq_prompt_mapping
,
// [num_seqs] mapping from seq_idx to prompt_idx
scalar_t
*
__restrict__
out
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
q
,
// [num_seqs, num_heads, head_size]
const
scalar_t
*
__restrict__
k_cache
,
// [num_blocks, num_heads, head_size/x, block_size, x]
const
scalar_t
*
__restrict__
v_cache
,
// [num_blocks, num_heads, head_size, block_size]
const
float
scale
,
const
int
*
__restrict__
block_tables
,
// [num_prompts, max_num_blocks_per_seq]
const
int
*
__restrict__
context_lens
,
// [num_prompts]
const
int
max_num_blocks_per_seq
)
{
const
int
seq_idx
=
blockIdx
.
y
;
const
int
prompt_idx
=
seq_prompt_mapping
[
seq_idx
];
const
int
seq_start_idx
=
cu_query_lens
[
prompt_idx
];
const
int
seq_len
=
cu_query_lens
[
prompt_idx
+
1
]
-
seq_start_idx
;
const
int
*
block_table
=
block_tables
+
prompt_idx
*
max_num_blocks_per_seq
;
const
int
context_len
=
context_lens
[
prompt_idx
];
multi_query_cached_kv_attention_kernel_unoptimized_
<
scalar_t
,
HEAD_SIZE
,
BLOCK_SIZE
,
NUM_THREADS
>
(
out
,
q
,
seq_start_idx
,
seq_len
,
k_cache
,
v_cache
,
scale
,
block_table
,
context_len
,
max_num_blocks_per_seq
);
}
}
// namespace cacheflow
#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
...
...
@@ -402,4 +683,186 @@ void single_query_cached_kv_attention(
}
}
#define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS) \
cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS> \
<<<grid, block, shared_mem_size, stream>>>( \
cu_query_lens_ptr, \
seq_prompt_mapping_ptr, \
out_ptr, \
query_ptr, \
key_cache_ptr, \
value_cache_ptr, \
scale, \
block_tables_ptr, \
context_lens_ptr, \
max_num_blocks_per_seq);
// TODO(woosuk): Tune NUM_THREADS.
template
<
typename
T
,
int
BLOCK_SIZE
,
int
NUM_THREADS
=
128
>
void
multi_query_cached_kv_attention_launcher
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
seq_prompt_mapping
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
max_context_len
)
{
int
num_seqs
=
query
.
size
(
0
);
int
num_heads
=
query
.
size
(
1
);
int
head_size
=
query
.
size
(
2
);
int
max_num_blocks_per_seq
=
block_tables
.
size
(
1
);
int
*
cu_query_lens_ptr
=
cu_query_lens
.
data_ptr
<
int
>
();
int
*
seq_prompt_mapping_ptr
=
seq_prompt_mapping
.
data_ptr
<
int
>
();
T
*
out_ptr
=
reinterpret_cast
<
T
*>
(
out
.
data_ptr
());
T
*
query_ptr
=
reinterpret_cast
<
T
*>
(
query
.
data_ptr
());
T
*
key_cache_ptr
=
reinterpret_cast
<
T
*>
(
key_cache
.
data_ptr
());
T
*
value_cache_ptr
=
reinterpret_cast
<
T
*>
(
value_cache
.
data_ptr
());
int
*
block_tables_ptr
=
block_tables
.
data_ptr
<
int
>
();
int
*
context_lens_ptr
=
context_lens
.
data_ptr
<
int
>
();
constexpr
int
NUM_WARPS
=
NUM_THREADS
/
WARP_SIZE
;
int
padded_max_context_len
=
((
max_context_len
+
BLOCK_SIZE
-
1
)
/
BLOCK_SIZE
)
*
BLOCK_SIZE
;
int
logits_size
=
padded_max_context_len
*
sizeof
(
float
);
int
outputs_size
=
(
NUM_WARPS
/
2
)
*
head_size
*
sizeof
(
float
);
int
shared_mem_size
=
std
::
max
(
logits_size
,
outputs_size
);
dim3
grid
(
num_heads
,
num_seqs
);
dim3
block
(
NUM_THREADS
);
const
cudaStream_t
stream
=
at
::
cuda
::
getCurrentCUDAStream
();
switch
(
head_size
)
{
case
32
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
32
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
64
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
64
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
80
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
80
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
96
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
96
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
128
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
128
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
160
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
160
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
192
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
192
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
case
256
:
LAUNCH_MULTI_ATTENTION_KERNEL
(
T
,
256
,
BLOCK_SIZE
,
NUM_THREADS
);
break
;
default:
assert
(
false
);
break
;
}
}
void
multi_query_cached_kv_attention
(
torch
::
Tensor
&
cu_query_lens
,
torch
::
Tensor
&
out
,
torch
::
Tensor
&
query
,
torch
::
Tensor
&
key_cache
,
torch
::
Tensor
&
value_cache
,
float
scale
,
torch
::
Tensor
&
block_tables
,
torch
::
Tensor
&
context_lens
,
int
block_size
,
int
max_context_len
)
{
torch
::
Tensor
query_lens
=
cu_query_lens
.
to
(
torch
::
kCPU
);
int
num_queries
=
query_lens
.
size
(
0
)
-
1
;
const
int
*
query_lens_ptr
=
query_lens
.
data_ptr
<
int
>
();
int
num_seqs
=
query
.
size
(
0
);
torch
::
Tensor
cpu_tensor
=
torch
::
empty
({
num_seqs
},
torch
::
dtype
(
torch
::
kInt32
));
auto
accessor
=
cpu_tensor
.
accessor
<
int32_t
,
1
>
();
for
(
int
i
=
0
,
query_cursor
=
0
;
i
<
num_seqs
;
++
i
)
{
if
(
i
>=
query_lens_ptr
[
query_cursor
+
1
])
{
++
query_cursor
;
}
accessor
[
i
]
=
query_cursor
;
}
// TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
// implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
// the mapping as an input parameter. Let's do this optimization in a later PR.
torch
::
Tensor
seq_prompt_mapping
=
cpu_tensor
.
to
(
torch
::
kCUDA
);
// TODO(woosuk): Support BF16.
if
(
query
.
element_size
()
==
2
)
{
// Half.
if
(
block_size
==
8
)
{
multi_query_cached_kv_attention_launcher
<
uint16_t
,
8
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
16
)
{
multi_query_cached_kv_attention_launcher
<
uint16_t
,
16
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
{
assert
(
false
);
}
}
else
if
(
query
.
element_size
()
==
4
)
{
// Float.
if
(
block_size
==
8
)
{
multi_query_cached_kv_attention_launcher
<
float
,
8
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
if
(
block_size
==
16
)
{
multi_query_cached_kv_attention_launcher
<
float
,
16
>
(
cu_query_lens
,
seq_prompt_mapping
,
out
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
max_context_len
);
}
else
{
assert
(
false
);
}
}
else
{
assert
(
false
);
}
}
#undef WARP_SIZE
tests/kernels/attention.py
View file @
21b3671b
...
...
@@ -97,6 +97,61 @@ def ref_multi_query_kv_attention(
return
ref_output
def
ref_multi_query_cached_kv_attention
(
cu_query_lens
:
List
[
int
],
query
:
torch
.
Tensor
,
key_cache
:
torch
.
Tensor
,
value_cache
:
torch
.
Tensor
,
block_tables
:
torch
.
Tensor
,
context_lens
:
torch
.
Tensor
,
dtype
:
torch
.
dtype
,
)
->
torch
.
Tensor
:
num_heads
=
value_cache
.
shape
[
1
]
head_size
=
value_cache
.
shape
[
2
]
block_size
=
value_cache
.
shape
[
3
]
scale
=
1.0
/
(
head_size
**
0.5
)
num_queries
=
len
(
cu_query_lens
)
-
1
ref_outputs
=
[]
for
i
in
range
(
num_queries
):
start_idx
=
cu_query_lens
[
i
]
end_idx
=
cu_query_lens
[
i
+
1
]
query_len
=
end_idx
-
start_idx
context_len
=
int
(
context_lens
[
i
])
block_table
=
block_tables
[
i
]
# Create attention mask
attn_mask
=
torch
.
triu
(
torch
.
ones
(
query_len
,
context_len
),
diagonal
=
context_len
-
query_len
+
1
)
*
-
1e5
attn_mask
=
attn_mask
.
to
(
dtype
=
dtype
,
device
=
'cuda'
)
keys
=
[]
values
=
[]
for
j
in
range
(
context_len
):
block_number
=
int
(
block_table
[
j
//
block_size
])
block_offset
=
j
%
block_size
k
=
key_cache
[
block_number
,
:,
:,
block_offset
,
:]
k
=
k
.
reshape
(
num_heads
,
head_size
)
keys
.
append
(
k
)
v
=
value_cache
[
block_number
,
:,
:,
block_offset
]
values
.
append
(
v
)
keys
=
torch
.
stack
(
keys
,
dim
=
0
)
values
=
torch
.
stack
(
values
,
dim
=
0
)
ref_output
=
ref_masked_attention
(
query
[
start_idx
:
end_idx
],
keys
,
values
,
scale
,
attn_mask
=
attn_mask
,
)
ref_outputs
.
append
(
ref_output
)
ref_output
=
torch
.
cat
(
ref_outputs
,
dim
=
0
)
return
ref_output
def
test_single_query_cached_kv_attention
(
num_tokens
:
int
,
num_heads
:
int
,
...
...
@@ -216,6 +271,76 @@ def test_multi_query_kv_attention(
assert
torch
.
allclose
(
output
,
ref_output
,
atol
=
1e-3
,
rtol
=
1e-5
)
def
test_multi_query_cached_kv_attention
(
num_queries
:
int
,
num_heads
:
int
,
head_size
:
int
,
block_size
:
int
,
num_blocks
:
int
,
dtype
:
torch
.
dtype
,
)
->
None
:
query_lens
=
random
.
sample
(
range
(
1
,
MAX_SEQ_LEN
),
num_queries
)
cu_query_lens
=
[
0
]
for
query_len
in
query_lens
:
cu_query_lens
.
append
(
cu_query_lens
[
-
1
]
+
query_len
)
num_total_tokens
=
cu_query_lens
[
-
1
]
query
=
torch
.
randn
(
num_total_tokens
,
num_heads
,
head_size
,
dtype
=
dtype
,
device
=
'cuda'
)
x
=
16
//
torch
.
tensor
([],
dtype
=
dtype
).
element_size
()
key_block_shape
=
(
num_heads
,
head_size
//
x
,
block_size
,
x
)
key_cache
=
torch
.
randn
(
size
=
(
num_blocks
,
*
key_block_shape
),
dtype
=
dtype
,
device
=
'cuda'
)
value_block_shape
=
(
num_heads
,
head_size
,
block_size
)
value_cache
=
torch
.
randn
(
size
=
(
num_blocks
,
*
value_block_shape
),
dtype
=
dtype
,
device
=
'cuda'
)
cu_query_lens
=
torch
.
tensor
(
cu_query_lens
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
context_lens
=
[
query_len
+
random
.
randint
(
0
,
MAX_SEQ_LEN
-
query_len
)
for
query_len
in
query_lens
]
max_context_len
=
max
(
context_lens
)
context_lens
=
torch
.
tensor
(
context_lens
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
max_num_blocks_per_seq
=
(
max_context_len
+
block_size
-
1
)
//
block_size
block_tables
=
[]
for
_
in
range
(
num_queries
):
block_table
=
[
random
.
randint
(
0
,
num_blocks
-
1
)
for
_
in
range
(
max_num_blocks_per_seq
)
]
block_tables
.
append
(
block_table
)
block_tables
=
torch
.
tensor
(
block_tables
,
dtype
=
torch
.
int
,
device
=
'cuda'
)
scale
=
float
(
1.0
/
(
head_size
**
0.5
))
output
=
torch
.
empty_like
(
query
)
attention_ops
.
multi_query_cached_kv_attention
(
cu_query_lens
,
output
,
query
,
key_cache
,
value_cache
,
scale
,
block_tables
,
context_lens
,
block_size
,
max_context_len
,
)
ref_output
=
ref_multi_query_cached_kv_attention
(
cu_query_lens
,
query
,
key_cache
,
value_cache
,
block_tables
,
context_lens
,
dtype
,
)
assert
torch
.
allclose
(
output
,
ref_output
,
atol
=
1e-3
,
rtol
=
1e-5
)
@
torch
.
inference_mode
()
def
test_attention
(
seed
:
int
)
->
None
:
# NOTE(woosuk): Even when the seed is fixed, there is a chance that
...
...
@@ -237,6 +362,24 @@ def test_attention(seed: int) -> None:
dtype
=
dtype
,
)
# NOTE(siyuan): Same as above. Re-run the test if it fails. Also
# note that the test is also more likely to fail due to the much
# larger amount of tokens in the input may increase the variance.
for
dtype
in
[
torch
.
half
,
torch
.
float
]:
for
block_size
in
[
8
,
16
]:
for
head_size
in
[
32
,
64
,
80
,
96
,
128
,
160
,
192
,
256
]:
print
(
f
'Testing multi_query_cached_kv_attention with '
f
'dtype=
{
dtype
}
, block_size=
{
block_size
}
, '
f
'head_size=
{
head_size
}
'
)
test_multi_query_cached_kv_attention
(
num_queries
=
11
,
num_heads
=
3
,
head_size
=
head_size
,
block_size
=
block_size
,
num_blocks
=
1024
,
dtype
=
dtype
,
)
# NOTE(woosuk): FlashAttention does not support FP32.
for
dtype
in
[
torch
.
half
]:
# NOTE(woosuk): FlashAttention does not support head_size > 128.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment