"vscode:/vscode.git/clone" did not exist on "11eea69e70aaca8385658a2346e9327b6dcfa20a"
q_gemm.cu 26.1 KB
Newer Older
CHU Tianxiang's avatar
CHU Tianxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/*
Adapted from https://github.com/turboderp/exllamav2 and https://github.com/qwopqwop200/GPTQ-for-LLaMa
*/

#include <cstdint>
#include <cstdio>

#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>

#include "compat.cuh"
#include "matrix_view.cuh"
#include "qdq_4.cuh"

namespace vllm {
namespace gptq {

#define BLOCK_KN_SIZE 128
#define BLOCK_M_SIZE_MAX 8
#define MAX_GROUPS_IN_BLOCK (BLOCK_KN_SIZE / 32)
#define MAX_Q_GEMM_ROWS 50
#define MAX_ALT_GEMM_ROWS 8
#define THREADS_X 32
#define THREADS_Y 32
#define DIVIDE(x, size) (((x) + (size) - 1) / (size))

#if defined(USE_ROCM)
kliuae's avatar
kliuae committed
31
#include <hipblas/hipblas.h>
CHU Tianxiang's avatar
CHU Tianxiang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
__host__ __forceinline__ hipblasStatus_t __compat_hipblasHgemm(hipblasHandle_t    handle,
                                                               hipblasOperation_t transA,
                                                               hipblasOperation_t transB,
                                                               int                m,
                                                               int                n,
                                                               int                k,
                                                               const half*        alpha,
                                                               const half*        AP,
                                                               int                lda,
                                                               const half*        BP,
                                                               int                ldb,
                                                               const half*        beta,
                                                               half*              CP,
                                                               int                ldc) {
    return hipblasHgemm(handle, transA, transB, m, n, k,
                        reinterpret_cast<const hipblasHalf *>(alpha),
                        reinterpret_cast<const hipblasHalf *>(AP), lda,
                        reinterpret_cast<const hipblasHalf *>(BP), ldb,
                        reinterpret_cast<const hipblasHalf *>(beta),
                        reinterpret_cast<hipblasHalf *>(CP), ldc);
}
#define hipblasHgemm __compat_hipblasHgemm

// Previous version of PyTorch were converting to rocBLAS instead of hipBLAS.
#define rocblas_operation_none HIPBLAS_OP_N
#define rocblas_hgemm __compat_hipblasHgemm
#endif

__forceinline__ __device__ half2 dot22_8(half2(&dq)[4], const half* a_ptr, const half2 g_result)
{
    half2 result = {};
    const half2* a2_ptr = (const half2*)a_ptr;
    #pragma unroll
    for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
    return __hadd2(result, g_result);
}

__forceinline__ __device__ float dot22_8_f(half2(&dq)[4], const half* a_ptr)
{
    half2 result = {};
    const half2* a2_ptr = (const half2*)a_ptr;
    #pragma unroll
    for (int i = 0; i < 4; i++) result = __hfma2(dq[i], *a2_ptr++, result);
    return __half2float(__low2half(result)) + __half2float(__high2half(result));
}

typedef void (*fp_gemm_half_q_half_gptq_kernel)
(
    const half*,
    const uint32_t*,
    const uint32_t*,
    const half*,
    half*,
    const int,
    const int,
    const int,
    const int,
    const int*
);

template <bool first_block, int m_count>
__global__ void gemm_half_q_half_gptq_kernel
(
    const half* __restrict__ a,
    const uint32_t* __restrict__ b_q_weight,
    const uint32_t* __restrict__ b_gptq_qzeros,
    const half* __restrict__ b_gptq_scales,
    half* __restrict__ c,
    const int size_m,
    const int size_n,
    const int size_k,
    const int groups,
    const int* __restrict__ b_q_perm
)
{
    MatrixView_half a_(a, size_m, size_k);
    MatrixView_half_rw c_(c, size_m, size_n);
    MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
    MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);

    int t = threadIdx.x;

    // Block
    int offset_n = blockIdx.x * BLOCK_KN_SIZE * 4;
    int offset_m = blockIdx.y * m_count;
    int offset_k = blockIdx.z * BLOCK_KN_SIZE;

    int end_n = min(offset_n + BLOCK_KN_SIZE * 4, size_n);
    int end_m = min(offset_m + m_count, size_m);
    int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);

    int n = offset_n + t * 4;

    // Preload block_a
    __shared__ half block_a[m_count][BLOCK_KN_SIZE];

    if (offset_k + t < end_k)
    {
        for (int m = 0; m < m_count; ++m)
        {
            const half* a_ptr = a_.item_ptr(offset_m + m, 0);
            half* block_a_ptr = block_a[m];

            half a0;
            if (b_q_perm) a0 = a_ptr[b_q_perm[offset_k + t]];
            else a0 = a_ptr[offset_k + t];
            block_a_ptr[t] = a0;
        }
    }

    // Zero output
    if (n >= size_n) return;

    if (blockIdx.z == 0)
    {
        for (int m = 0; m < m_count; m++)
            *((uint64_t*)c_.item_ptr(offset_m + m, n)) = 0;
    }

    __syncthreads();

    // Find initial group
    int groupsize = size_k / groups;
    int group = offset_k / groupsize;
    int nextgroup = offset_k + groupsize;

    // a, b offset
    int qk = offset_k / (32 / 4);

    const uint32_t* b_ptr = b_q_weight + qk * size_n + n;
    const half* a_ptr = &block_a[0][0];
    int a_stride = BLOCK_KN_SIZE;

    // Initial group
    int zeros[4];
    float scales[4];
    half2 z1z16[4][2];
    half2 y1y16[4][2];
    b_gptq_qzeros_.item4(zeros, group, n);
    b_gptq_scales_.item4_f(scales, group, n);
    dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
    dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
    dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
    dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);

    // Column result
    float block_c[m_count][4] = {};

    // Dequantize and multiply
    int k = offset_k;
    while (k < end_k)
    {
        if (k == nextgroup)
        {
            group++;
            nextgroup += groupsize;
            b_gptq_qzeros_.item4(zeros, group, n);
            b_gptq_scales_.item4_f(scales, group, n);
            dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
            dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
            dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
            dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
        }

        #pragma unroll
        for (int j = 0; j < 4; j++)
        {
            const int4* b_ptr4 = (int4*) b_ptr;
            int4 load_int4 = *b_ptr4;

            half2 dq[4][4];
            dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
            dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
            dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
            dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);

            #pragma unroll
            for (int m = 0; m < m_count; m++)
            {
                block_c[m][0] = fma(dot22_8_f(dq[0], a_ptr + m * a_stride), scales[0], block_c[m][0]);
                block_c[m][1] = fma(dot22_8_f(dq[1], a_ptr + m * a_stride), scales[1], block_c[m][1]);
                block_c[m][2] = fma(dot22_8_f(dq[2], a_ptr + m * a_stride), scales[2], block_c[m][2]);
                block_c[m][3] = fma(dot22_8_f(dq[3], a_ptr + m * a_stride), scales[3], block_c[m][3]);
            }

            b_ptr += size_n;
            a_ptr += 8;
        }

        k += 32;
    }

    for (int m = 0; m < m_count; m++)
    {
        half2 *out = (half2*) c_.item_ptr(offset_m + m, n);
        half2 result01 = __halves2half2(__float2half_rn(block_c[m][0]), __float2half_rn(block_c[m][1]));
        half2 result23 = __halves2half2(__float2half_rn(block_c[m][2]), __float2half_rn(block_c[m][3]));
        atomicAdd(out    , result01);
        atomicAdd(out + 1, result23);
    }
}


fp_gemm_half_q_half_gptq_kernel pick_gemm_half_q_half_gptq_kernel(bool first_block, const int m_count)
{
    #if BLOCK_M_SIZE_MAX >= 1
    if (m_count == 1) return gemm_half_q_half_gptq_kernel<true, 1>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 2
    if (m_count == 2) return gemm_half_q_half_gptq_kernel<true, 2>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 3
    if (m_count == 3) return gemm_half_q_half_gptq_kernel<true, 3>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 4
    if (m_count == 4) return gemm_half_q_half_gptq_kernel<true, 4>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 5
    if (m_count == 5) return gemm_half_q_half_gptq_kernel<true, 5>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 6
    if (m_count == 6) return gemm_half_q_half_gptq_kernel<true, 6>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 7
    if (m_count == 7) return gemm_half_q_half_gptq_kernel<true, 7>;
    #endif
    #if BLOCK_M_SIZE_MAX >= 8
    if (m_count == 8) return gemm_half_q_half_gptq_kernel<true, 8>;
    #endif
    return NULL;
}


void gemm_half_q_half_cuda_part
(
    const half* a,
    const uint32_t* b_q_weight,
    const uint32_t* b_gptq_qzeros,
    const half* b_gptq_scales,
    const int* b_q_perm,
    half* c,
    int size_m,
    int size_n,
    int size_k,
    int m_count,
    int groups
)
{
    dim3 blockDim, gridDim;
    blockDim.x = BLOCK_KN_SIZE;
    blockDim.y = 1;
    blockDim.z = 1;
    gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE * 4);
    gridDim.y = DIVIDE(size_m, m_count);
    gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);

    fp_gemm_half_q_half_gptq_kernel kernel = pick_gemm_half_q_half_gptq_kernel(true, m_count);

290
291
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    kernel<<<gridDim, blockDim, 0, stream>>>
CHU Tianxiang's avatar
CHU Tianxiang committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
    (
        a,
        b_q_weight,
        b_gptq_qzeros,
        b_gptq_scales,
        c,
        size_m,
        size_n,
        size_k,
        groups,
        b_q_perm
    );
}


__global__ void reconstruct_exllama_kernel
(
    const uint32_t* __restrict__ b_q_weight,
    const int* __restrict__ b_q_perm,
    const uint32_t* __restrict__ b_gptq_qzeros,
    const half* __restrict__ b_gptq_scales,
    const int size_k,
    const int size_n,
    const int groups,
    half* __restrict__ b
)
{
    MatrixView_half_rw b_(b, size_k, size_n);
    MatrixView_q4_row b_gptq_qzeros_(b_gptq_qzeros, groups, size_n);
    MatrixView_half b_gptq_scales_(b_gptq_scales, groups, size_n);

    int offset_k = BLOCK_KN_SIZE * blockIdx.y;
    int offset_n = BLOCK_KN_SIZE * blockIdx.x * 4;

    int end_k = min(offset_k + BLOCK_KN_SIZE, size_k);

    // Preload remapping table
    __shared__ int perm[BLOCK_KN_SIZE];
    int t = threadIdx.x;

    if (b_q_perm)
    {
        if (offset_k + t < size_k)
            perm[t] = b_q_perm[offset_k + t];
    }

    // Column
    int n = offset_n + t * 4;
    if (n >= size_n) return;

    // Find initial group
    int groupsize = size_k / groups;
    int group = offset_k / groupsize;
    int nextgroup = offset_k + groupsize;

    // b offset
    int qk = offset_k / (32 / 4);

    const uint32_t* b_ptr = b_q_weight + qk * size_n + n;

    // Initial zeros/scale
    int zeros[4];
    half2 scales[4];
    half2 z1z16[4][2];
    half2 y1y16[4][2];
    b_gptq_qzeros_.item4(zeros, group, n);
    b_gptq_scales_.item4_h2(scales, group, n);
    dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
    dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
    dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
    dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);

    __syncthreads();

    int k = offset_k;
    int lk = 0;

    while (k < end_k)
    {
        if (k == nextgroup)
        {
            group++;
            nextgroup += groupsize;
            b_gptq_qzeros_.item4(zeros, group, n);
            b_gptq_scales_.item4_h2(scales, group, n);
            dequant_4bit_8_prep_zero(zeros[0] + 1, z1z16[0], y1y16[0]);
            dequant_4bit_8_prep_zero(zeros[1] + 1, z1z16[1], y1y16[1]);
            dequant_4bit_8_prep_zero(zeros[2] + 1, z1z16[2], y1y16[2]);
            dequant_4bit_8_prep_zero(zeros[3] + 1, z1z16[3], y1y16[3]);
        }

        for (int p = 0; p < 4; p++)
        {
            half2 dq[4][4];
            const int4* b_ptr4 = (int4*) b_ptr;
            int4 load_int4 = *b_ptr4;

            dequant_4bit_8_gptq(load_int4.x, dq[0], z1z16[0], y1y16[0], size_n, false);
            dequant_4bit_8_gptq(load_int4.y, dq[1], z1z16[1], y1y16[1], size_n, false);
            dequant_4bit_8_gptq(load_int4.z, dq[2], z1z16[2], y1y16[2], size_n, false);
            dequant_4bit_8_gptq(load_int4.w, dq[3], z1z16[3], y1y16[3], size_n, false);

            b_ptr += size_n;
            //half* dqh = (half*)dq;
            if (b_q_perm)
            {
                for (int j = 0; j < 4; j++)
                {
                    for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
                    b_.set4(perm[lk++], n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
                    b_.set4(perm[lk++], n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
                }
            }
            else
            {
                for (int j = 0; j < 4; j++)
                {
                    for (int v = 0; v < 4; v++) dq[v][j] = __hmul2(scales[v], dq[v][j]);
                    b_.set4(offset_k + lk++, n, __low2half(dq[0][j]), __low2half(dq[1][j]), __low2half(dq[2][j]), __low2half(dq[3][j]));
                    b_.set4(offset_k + lk++, n, __high2half(dq[0][j]), __high2half(dq[1][j]), __high2half(dq[2][j]), __high2half(dq[3][j]));
                }
            }
        }
        k += 32;
    }
}


void reconstruct_exllama
(
    const uint32_t* b_q_weight,
    const uint32_t* b_gptq_qzeros,
    const half* b_gptq_scales,
    const int* b_q_perm,
    half* out,
    int height,
    int width,
    int groups
)
{
    dim3 blockDim, gridDim;
    blockDim.x = BLOCK_KN_SIZE;
    blockDim.y = 1;
    gridDim.y = DIVIDE(height, BLOCK_KN_SIZE);
    gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);

438
439
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    reconstruct_exllama_kernel<<<gridDim, blockDim, 0, stream>>>
CHU Tianxiang's avatar
CHU Tianxiang committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
    (
        b_q_weight,
        b_q_perm,
        b_gptq_qzeros,
        b_gptq_scales,
        height,
        width,
        groups,
        out
    );
}


__global__ void gemm_half_q_half_alt_kernel(
    const half2* __restrict__ vec,
    const uint32_t* __restrict__ mat,
    half* __restrict__ mul,
    const half* __restrict__ scales,
    const uint32_t* __restrict__ zeros,
    const int* __restrict__ g_idx,
    int batch,
    int height,
    int width
)
{
    int zero_width = width / 8;
    int vec_height = height * 4;
    const int blockwidth2 = BLOCK_KN_SIZE / 2;
    int b = blockIdx.y * BLOCK_M_SIZE_MAX;
    int b_end = min(BLOCK_M_SIZE_MAX, batch - b);
    int h = BLOCK_KN_SIZE * blockIdx.z / 8;
    int h_end = min(BLOCK_KN_SIZE / 8, height - h) * 4;
    int w = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;

    __shared__ half2 blockvec[BLOCK_M_SIZE_MAX][blockwidth2];
    if (threadIdx.x < h_end) {
        for (int m = 0; m < b_end; ++m) {
          blockvec[m][threadIdx.x] =
              vec[(m + b) * vec_height + blockIdx.z * BLOCK_KN_SIZE / 2 +
                  threadIdx.x];
        }
    }

    __shared__ half2 deq2[256][8];
    int val = threadIdx.x / 8;
    int off = threadIdx.x % 8;
    for (; val < 256; val += BLOCK_KN_SIZE / 8) {
        deq2[val][off] = __halves2half2(
            __int2half_rn(val & 0xF), __int2half_rn(val >> 4)
        );
    }

    if (blockIdx.z == 0)
    {
        for (int m = 0; m < b_end; m++)
            mul[(b + m) * width + w] = __int2half_rn(0);
    }
    __syncthreads();

    int i = width * h + w;
    int g_h = h * 8;
    int k = 0;
    int z_w = w / 8;
    int z_mod = (w % 8) * 4;
    half2 res2;
    half res[BLOCK_M_SIZE_MAX] = {};

    unsigned int tmp;
    while (k < h_end) {
        tmp = mat[i];
        half2 scales_tmp[4];
        half2 zeros_tmp[4];
        for (int tmp_k = 0; tmp_k < 4; tmp_k++) {
            int g = g_idx[g_h + (k + tmp_k) * 2];
            int g2 = g_idx[g_h + (k + tmp_k) * 2 + 1];
            half scale_f = scales[g * width + w];
            half scale_f2 = scales[g2 * width + w];
            half2 scale = __halves2half2(scale_f, scale_f2);
            half2 zero = __halves2half2(
                __hmul(scale_f, __int2half_rn(-((zeros[g * zero_width + z_w] >> z_mod) & 0xF) - 1)),
                __hmul(scale_f2, __int2half_rn(-((zeros[g2 * zero_width + z_w] >> z_mod) & 0xF) - 1))
            );
            scales_tmp[tmp_k] = scale;
            zeros_tmp[tmp_k] = zero;
        }
        for (int m = 0; m < b_end; m++) {
kliuae's avatar
kliuae committed
526
#ifndef USE_ROCM
CHU Tianxiang's avatar
CHU Tianxiang committed
527
            res2 = {};
kliuae's avatar
kliuae committed
528
529
530
531
#else
            res2.x = __half_as_ushort(__float2half(0));
            res2.y = __half_as_ushort(__float2half(0));
#endif
CHU Tianxiang's avatar
CHU Tianxiang committed
532
533
534
535
            res2 = __hfma2(__hfma2(deq2[(tmp >>  0) & 0xff][off], scales_tmp[0], zeros_tmp[0]), blockvec[m][k + 0], res2);
            res2 = __hfma2(__hfma2(deq2[(tmp >>  8) & 0xff][off], scales_tmp[1], zeros_tmp[1]), blockvec[m][k + 1], res2);
            res2 = __hfma2(__hfma2(deq2[(tmp >> 16) & 0xff][off], scales_tmp[2], zeros_tmp[2]), blockvec[m][k + 2], res2);
            res2 = __hfma2(__hfma2(deq2[(tmp >> 24) & 0xff][off], scales_tmp[3], zeros_tmp[3]), blockvec[m][k + 3], res2);
kliuae's avatar
kliuae committed
536
#ifndef USE_ROCM
CHU Tianxiang's avatar
CHU Tianxiang committed
537
            res[m] = __hadd(res[m], __hadd(res2.x, res2.y));
kliuae's avatar
kliuae committed
538
539
540
#else
            res[m] = __hadd(res[m], __hadd(__ushort_as_half(res2.x), __ushort_as_half(res2.y)));
#endif
CHU Tianxiang's avatar
CHU Tianxiang committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
        }
        i += width;
        k += 4;
    }
    for (int m = 0; m < b_end; m++) {
        atomicAdd(&mul[(b + m) * width + w], res[m]);
    }
}


void gemm_half_q_half_alt
(
    const half* a,
    const uint32_t* b_q_weight,
    const uint32_t* b_gptq_qzeros,
    const half* b_gptq_scales,
    const int* b_g_idx,
    half* c,
    int size_m,
    int size_n,
    int size_k
)
{
    dim3 blockDim, gridDim;
    blockDim.x = BLOCK_KN_SIZE;
    blockDim.y = 1;
    blockDim.z = 1;
    gridDim.x = DIVIDE(size_n, BLOCK_KN_SIZE);
    gridDim.y = DIVIDE(size_m, BLOCK_M_SIZE_MAX);
    gridDim.z = DIVIDE(size_k, BLOCK_KN_SIZE);

572
573
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    gemm_half_q_half_alt_kernel<<<gridDim, blockDim, 0, stream>>>
CHU Tianxiang's avatar
CHU Tianxiang committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    (
        (const half2*) a,
        b_q_weight,
        c,
        b_gptq_scales,
        b_gptq_qzeros,
        b_g_idx,
        size_m,
        size_k / 8,
        size_n
    );
}


__global__ void reconstruct_gptq_kernel
(
    const uint32_t* __restrict__ w,
    const half* __restrict__ w_scales,
    const uint32_t* __restrict__ w_zeros,
    const int* __restrict__ g_idx,
    const int height,
    const int width,
    const int group,
    half* __restrict__ out
)
{
    // Start of block

    int column = BLOCK_KN_SIZE * blockIdx.x + threadIdx.x;
    int row = blockIdx.y * 8;
    if (column >= width) return;

    // Views

    MatrixView_q4_column w_(w, height, width);
    MatrixView_half_rw out_(out, height, width);
    MatrixView_half w_scales_(w_scales, group, width);
    MatrixView_q4_row w_zeros_(w_zeros, group, width);

    uint32_t w_read = w_.item_uint32_t(row, column);
    half* out_ptr = out_.item_ptr(row, column);

    #pragma unroll
    for (int s = 0; s < 32; s += 4)
    {
        int group = g_idx[row + s / 4];
        half w_scale = w_scales_.item(group, column);
        uint32_t w_zero = w_zeros_.item(group, column) + 1;
        half w_item = __hmul(__int2half_rn((int)((w_read >> s) & 0x0f) - w_zero), w_scale);
        *out_ptr = w_item; out_ptr += out_.width;
    }
}


void reconstruct_gptq
(
    const uint32_t* b_q_weight,
    const uint32_t* b_gptq_qzeros,
    const half* b_gptq_scales,
    const int* b_g_idx,
    half* out,
    int height,
    int width,
    int groups
)
{
    dim3 blockDim, gridDim;
    blockDim.x = BLOCK_KN_SIZE;
    blockDim.y = 1;
    gridDim.y = DIVIDE(height, 8);
    gridDim.x = DIVIDE(width, BLOCK_KN_SIZE);
645
646
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    reconstruct_gptq_kernel<<<gridDim, blockDim, 0, stream>>>
CHU Tianxiang's avatar
CHU Tianxiang committed
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
    (
        b_q_weight,
        b_gptq_scales,
        b_gptq_qzeros,
        b_g_idx,
        height,
        width,
        groups,
        out
    );
}


void gemm_half_q_half_cuda
(
    cublasHandle_t cublas_handle,
    const half* a,
    const uint32_t* b_q_weight,
    const uint32_t* b_gptq_qzeros,
    const half* b_gptq_scales,
    const int* b_g_idx,
    half* c,
    half* temp_dq,
    int size_m,
    int size_n,
    int size_k,
    int groups,
    bool use_exllama
)
{
    if ((use_exllama && size_m > MAX_Q_GEMM_ROWS) || (!use_exllama && size_m > MAX_ALT_GEMM_ROWS)) {
        // Reconstruct FP16 matrix, then cuBLAS
        if (use_exllama) {
            reconstruct_exllama(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx, temp_dq,
                                size_k, size_n, groups);
        }
        else
        {
            reconstruct_gptq(b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
                             temp_dq, size_k, size_n, groups);
        }

        const half alpha = __float2half(1.0f);
        const half beta = __float2half(0.0f);
        cublasHgemm(cublas_handle,
                    CUBLAS_OP_N,
                    CUBLAS_OP_N,
                    size_n, size_m, size_k,
                    &alpha, temp_dq, size_n,
                            a,       size_k,
                    &beta,  c,       size_n);
    }
    else if (use_exllama)
    {
        // Quantized matmul
        int max_chunks = size_m / BLOCK_M_SIZE_MAX;
        int last_chunk = max_chunks * BLOCK_M_SIZE_MAX;
        int last_chunk_size = size_m - last_chunk;

        if (max_chunks)
        {
            gemm_half_q_half_cuda_part(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
                                        c, last_chunk, size_n, size_k, BLOCK_M_SIZE_MAX,
                                        groups);
        }

        if (last_chunk_size)
        {
            gemm_half_q_half_cuda_part(a + last_chunk * size_k, b_q_weight, b_gptq_qzeros,
                                        b_gptq_scales, b_g_idx, c + last_chunk * size_n,
                                        last_chunk_size, size_n, size_k, last_chunk_size,
                                        groups);
        }
    }
    else
    {
        gemm_half_q_half_alt(a, b_q_weight, b_gptq_qzeros, b_gptq_scales, b_g_idx,
                             c, size_m, size_n, size_k);
    }
}


__global__ void shuffle_kernel
(
    uint32_t* __restrict__ b_q_weight,
    const int size_k,
    const int size_n
)
{
    int n = blockIdx.x * THREADS_X + threadIdx.x;
    if (n >= size_n) return;
    int k = 0;
    uint32_t* b_ptr = b_q_weight + n;
    while (k < size_k) { shuffle_4bit_8 (b_ptr, size_n); b_ptr += 1 * size_n; k +=  8; }
}


__global__ void make_sequential_kernel
(
    const uint32_t* __restrict__ w,
    uint32_t* __restrict__ w_new,
    const int* __restrict__ q_perm,
    const int w_height,
    const int w_width
)
{
    const uint64_t* w2 = (uint64_t*) w;
    uint64_t* w_new2 = (uint64_t*) w_new;
    int w2_stride = w_width >> 1;
    int w2_column = THREADS_X * blockIdx.x + threadIdx.x;
    if (w2_column >= w2_stride) return;
    int w_new2_row = blockIdx.y;
    int q_perm_idx = w_new2_row << 3;
    uint64_t dst = 0;

    #pragma unroll
    for (int i = 0; i < 8; i++)
    {
        int source_row = q_perm[q_perm_idx++];

        int w2_row = source_row >> 3;
        int w2_subrow = source_row & 0x07;
        int w2_row_shift = w2_subrow << 2;
        int wnew2_row_shift = i << 2;

        uint64_t src = w2[w2_row * w2_stride + w2_column];
        src >>= w2_row_shift;
        src &= 0x0000000f0000000f;
        src <<= wnew2_row_shift;
        dst |= src;
    }
    w_new2[w_new2_row * w2_stride + w2_column] = dst;
}


void shuffle_exllama_weight
(
    uint32_t* q_weight,
    int* q_perm,
    int height,
    int width
)
{
    if (q_perm)
    {
        uint32_t* new_qweight = NULL;
        cudaMalloc(&new_qweight, height / 8 * width * sizeof(uint32_t));

        dim3 blockDim, gridDim;
        blockDim.x = THREADS_X;
        blockDim.y = 1;
        gridDim.x = DIVIDE(width, THREADS_X);
        gridDim.y = height / 8;

801
802
        const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
        make_sequential_kernel<<<gridDim, blockDim, 0, stream>>>
CHU Tianxiang's avatar
CHU Tianxiang committed
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
        (
            q_weight,
            new_qweight,
            q_perm,
            height / 8,
            width
        );
        // Replace qweights
        cudaMemcpyAsync(q_weight, new_qweight, height / 8 * width * sizeof(uint32_t), cudaMemcpyDeviceToDevice);
        // Cleanup
        cudaDeviceSynchronize();
        cudaFree(new_qweight);
    }
    dim3 blockDim, gridDim;
    blockDim.x = THREADS_X;
    blockDim.y = 1;
    gridDim.x = DIVIDE(width, THREADS_X);
    gridDim.y = 1;
821
822
    const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
    shuffle_kernel<<<gridDim, blockDim, 0, stream>>>(q_weight, height, width);
CHU Tianxiang's avatar
CHU Tianxiang committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
}

}  // namespace gptq
}  // namespace vllm

torch::Tensor gptq_gemm
(
    torch::Tensor a,
    torch::Tensor b_q_weight,
    torch::Tensor b_gptq_qzeros,
    torch::Tensor b_gptq_scales,
    torch::Tensor b_g_idx,
    bool use_exllama
)
{
    const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
    auto options = torch::TensorOptions().dtype(a.dtype()).device(a.device());
    at::Tensor c = torch::empty({a.size(0), b_q_weight.size(1)}, options);
    at::Tensor temp_dq = torch::empty({b_q_weight.size(0) * 8, b_q_weight.size(1)}, options);

    vllm::gptq::gemm_half_q_half_cuda
    (
        at::cuda::getCurrentCUDABlasHandle(),
        (const half*) a.data_ptr(),
        (const uint32_t*) b_q_weight.data_ptr(),
        (const uint32_t*)b_gptq_qzeros.data_ptr(),
        (const half*) b_gptq_scales.data_ptr(),
        b_g_idx.device().is_meta() ? NULL : (const int*) b_g_idx.data_ptr(),
        (half*) c.data_ptr(),
        (half*) temp_dq.data_ptr(),
        c.size(0),  // m
        c.size(1),  // n
        a.size(1),  // k
        b_gptq_qzeros.size(0),  // group number
        use_exllama
    );
    return c;
}

void gptq_shuffle
(
    torch::Tensor q_weight,
    torch::Tensor q_perm
)
{
    const at::cuda::OptionalCUDAGuard device_guard(device_of(q_weight));
    vllm::gptq::shuffle_exllama_weight(
        (uint32_t*) q_weight.data_ptr(),
        q_perm.device().is_meta() ? NULL : (int*) q_perm.data_ptr(),
        q_weight.size(0) * 8,
        q_weight.size(1)
    );
}