attention_kernels.cu 38.5 KB
Newer Older
1
2
/*
 * Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
Woosuk Kwon's avatar
Woosuk Kwon committed
3
 * Copyright (c) 2023, The vLLM team.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
18
19
20
21
#ifdef USE_ROCM
#include <hip/hip_runtime.h>
#endif

Woosuk Kwon's avatar
Woosuk Kwon committed
22
23
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>
24
#include <c10/cuda/CUDAGuard.h>
Woosuk Kwon's avatar
Woosuk Kwon committed
25

Woosuk Kwon's avatar
Woosuk Kwon committed
26
#include "attention_dtypes.h"
Woosuk Kwon's avatar
Woosuk Kwon committed
27
28
29
30
#include "attention_utils.cuh"

#include <algorithm>

31
#ifndef USE_ROCM
Woosuk Kwon's avatar
Woosuk Kwon committed
32
#define WARP_SIZE 32
33
34
35
#else
#define WARP_SIZE warpSize
#endif
Woosuk Kwon's avatar
Woosuk Kwon committed
36
37
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
38
#define DIVIDE_ROUND_UP(a, b) (((a) + (b) - 1) / (b))
Woosuk Kwon's avatar
Woosuk Kwon committed
39

Woosuk Kwon's avatar
Woosuk Kwon committed
40
namespace vllm {
Woosuk Kwon's avatar
Woosuk Kwon committed
41
42
43
44
45
46
47
48
49
50
51

// Utility function for attention softmax.
template<int NUM_WARPS>
inline __device__ float block_sum(float* red_smem, float sum) {
  // Decompose the thread index into warp / lane.
  int warp = threadIdx.x / WARP_SIZE;
  int lane = threadIdx.x % WARP_SIZE;

  // Compute the sum per warp.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
52
    sum += VLLM_SHFL_XOR_SYNC(sum, mask);
Woosuk Kwon's avatar
Woosuk Kwon committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  }

  // Warp leaders store the data to shared memory.
  if (lane == 0) {
    red_smem[warp] = sum;
  }

  // Make sure the data is in shared memory.
  __syncthreads();

  // The warps compute the final sums.
  if (lane < NUM_WARPS) {
    sum = red_smem[lane];
  }

  // Parallel reduction inside the warp.
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
71
    sum += VLLM_SHFL_XOR_SYNC(sum, mask);
Woosuk Kwon's avatar
Woosuk Kwon committed
72
73
74
  }

  // Broadcast to other threads.
75
  return VLLM_SHFL_SYNC(sum, 0);
Woosuk Kwon's avatar
Woosuk Kwon committed
76
77
}

78
79
// TODO(woosuk): Merge the last two dimensions of the grid.
// Grid: (num_heads, num_seqs, max_num_partitions).
Woosuk Kwon's avatar
Woosuk Kwon committed
80
81
82
83
template<
  typename scalar_t,
  int HEAD_SIZE,
  int BLOCK_SIZE,
84
85
86
87
88
89
  int NUM_THREADS,
  int PARTITION_SIZE = 0> // Zero means no partitioning.
__device__ void paged_attention_kernel(
  float* __restrict__ exp_sums,           // [num_seqs, num_heads, max_num_partitions]
  float* __restrict__ max_logits,         // [num_seqs, num_heads, max_num_partitions]
  scalar_t* __restrict__ out,             // [num_seqs, num_heads, max_num_partitions, head_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
90
  const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
Zhuohan Li's avatar
Zhuohan Li committed
91
92
  const scalar_t* __restrict__ k_cache,   // [num_blocks, num_kv_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ v_cache,   // [num_blocks, num_kv_heads, head_size, block_size]
93
  const int num_kv_heads,                 // [num_heads]
Woosuk Kwon's avatar
Woosuk Kwon committed
94
95
96
97
  const float scale,
  const int* __restrict__ block_tables,   // [num_seqs, max_num_blocks_per_seq]
  const int* __restrict__ context_lens,   // [num_seqs]
  const int max_num_blocks_per_seq,
Woosuk Kwon's avatar
Woosuk Kwon committed
98
  const float* __restrict__ alibi_slopes, // [num_heads]
Zhuohan Li's avatar
Zhuohan Li committed
99
100
101
  const int q_stride,
  const int kv_block_stride,
  const int kv_head_stride) {
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
  const int seq_idx = blockIdx.y;
  const int partition_idx = blockIdx.z;
  const int max_num_partitions = gridDim.z;
  constexpr bool USE_PARTITIONING = PARTITION_SIZE > 0;
  const int context_len = context_lens[seq_idx];
  if (USE_PARTITIONING && partition_idx * PARTITION_SIZE >= context_len) {
    // No work to do. Terminate the thread block.
    return;
  }

  const int num_context_blocks = DIVIDE_ROUND_UP(context_len, BLOCK_SIZE);
  const int num_blocks_per_partition = USE_PARTITIONING ? PARTITION_SIZE / BLOCK_SIZE : num_context_blocks;

  // [start_block_idx, end_block_idx) is the range of blocks to process.
  const int start_block_idx = USE_PARTITIONING ? partition_idx * num_blocks_per_partition : 0;
  const int end_block_idx = MIN(start_block_idx + num_blocks_per_partition, num_context_blocks);
  const int num_blocks = end_block_idx - start_block_idx;

  // [start_token_idx, end_token_idx) is the range of tokens to process.
  const int start_token_idx = start_block_idx * BLOCK_SIZE;
  const int end_token_idx = MIN(start_token_idx + num_blocks * BLOCK_SIZE, context_len);
  const int num_tokens = end_token_idx - start_token_idx;

Woosuk Kwon's avatar
Woosuk Kwon committed
125
  constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
126
127
  constexpr int NUM_THREAD_GROUPS = NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE divides NUM_THREADS
  assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
128
  constexpr int NUM_TOKENS_PER_THREAD_GROUP = DIVIDE_ROUND_UP(BLOCK_SIZE, WARP_SIZE);
Woosuk Kwon's avatar
Woosuk Kwon committed
129
130
131
132
133
134
135
  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  const int thread_idx = threadIdx.x;
  const int warp_idx = thread_idx / WARP_SIZE;
  const int lane = thread_idx % WARP_SIZE;

  const int head_idx = blockIdx.x;
  const int num_heads = gridDim.x;
136
137
  const int num_queries_per_kv = num_heads / num_kv_heads;
  const int kv_head_idx = head_idx / num_queries_per_kv;
Woosuk Kwon's avatar
Woosuk Kwon committed
138
  const float alibi_slope = alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
Woosuk Kwon's avatar
Woosuk Kwon committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

  // A vector type to store a part of a key or a query.
  // The vector size is configured in such a way that the threads in a thread group
  // fetch or compute 16 bytes at a time.
  // For example, if the size of a thread group is 4 and the data type is half,
  // then the vector size is 16 / (4 * sizeof(half)) == 2.
  constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
  using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
  using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;

  constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
  constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;

  const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
  const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;

  // Load the query to registers.
  // Each thread in a thread group has a different part of the query.
  // For example, if the the thread group size is 4, then the first thread in the group
  // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
  // th vectors of the query, and so on.
  // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
  const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
162
  __shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
Woosuk Kwon's avatar
Woosuk Kwon committed
163
#pragma unroll
164
  for (int i = thread_group_idx; i < NUM_VECS_PER_THREAD; i += NUM_THREAD_GROUPS) {
Woosuk Kwon's avatar
Woosuk Kwon committed
165
    const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
166
    q_vecs[thread_group_offset][i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
Woosuk Kwon's avatar
Woosuk Kwon committed
167
  }
168
  __syncthreads(); // TODO(naed90): possible speedup if this is replaced with a memory wall right before we use q_vecs
Woosuk Kwon's avatar
Woosuk Kwon committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

  // Memory planning.
  extern __shared__ char shared_mem[];
  // NOTE(woosuk): We use FP32 for the softmax logits for better accuracy.
  float* logits = reinterpret_cast<float*>(shared_mem);
  // Workspace for reduction.
  __shared__ float red_smem[2 * NUM_WARPS];

  // x == THREAD_GROUP_SIZE * VEC_SIZE
  // Each thread group fetches x elements from the key at a time.
  constexpr int x = 16 / sizeof(scalar_t);
  float qk_max = -FLT_MAX;

  // Iterate over the key blocks.
  // Each warp fetches a block of keys for each iteration.
  // Each thread group in a warp fetches a key from the block, and computes
  // dot product with the query.
186
187
  const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
  for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
188
189
190
191
    // NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
    // because int32 can lead to overflow when this variable is multiplied by large numbers
    // (e.g., kv_block_stride).
    const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
Woosuk Kwon's avatar
Woosuk Kwon committed
192
193
194
195
196
197
198
199
200
201
202
203
204

    // Load a key to registers.
    // Each thread in a thread group has a different part of the key.
    // For example, if the the thread group size is 4, then the first thread in the group
    // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
    // vectors of the key, and so on.
    for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
      const int physical_block_offset = (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
      const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
      K_vec k_vecs[NUM_VECS_PER_THREAD];

#pragma unroll
      for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
Zhuohan Li's avatar
Zhuohan Li committed
205
206
        const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
                                        + kv_head_idx * kv_head_stride
Woosuk Kwon's avatar
Woosuk Kwon committed
207
208
209
210
211
212
213
214
215
                                        + physical_block_offset * x;
        const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
        const int offset1 = (vec_idx * VEC_SIZE) / x;
        const int offset2 = (vec_idx * VEC_SIZE) % x;
        k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
      }

      // Compute dot product.
      // This includes a reduction across the threads in the same thread group.
216
      float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
Woosuk Kwon's avatar
Woosuk Kwon committed
217
      // Add the ALiBi bias if slopes are given.
218
      qk += (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
Woosuk Kwon's avatar
Woosuk Kwon committed
219

Woosuk Kwon's avatar
Woosuk Kwon committed
220
221
222
      if (thread_group_offset == 0) {
        // Store the partial reductions to shared memory.
        // NOTE(woosuk): It is required to zero out the masked logits.
Woosuk Kwon's avatar
Woosuk Kwon committed
223
        const bool mask = token_idx >= context_len;
224
        logits[token_idx - start_token_idx] = mask ? 0.f : qk;
Woosuk Kwon's avatar
Woosuk Kwon committed
225
226
227
228
229
230
231
232
233
234
235
        // Update the max value.
        qk_max = mask ? qk_max : fmaxf(qk_max, qk);
      }
    }
  }

  // Perform reduction across the threads in the same warp to get the
  // max qk value for each "warp" (not across the thread block yet).
  // The 0-th thread of each thread group already has its max qk value.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
236
    qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
Woosuk Kwon's avatar
Woosuk Kwon committed
237
238
239
240
241
242
243
244
245
246
247
  }
  if (lane == 0) {
    red_smem[warp_idx] = qk_max;
  }
  __syncthreads();

  // TODO(woosuk): Refactor this part.
  // Get the max qk value for the sequence.
  qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
248
    qk_max = fmaxf(qk_max, VLLM_SHFL_XOR_SYNC(qk_max, mask));
Woosuk Kwon's avatar
Woosuk Kwon committed
249
250
  }
  // Broadcast the max qk value to all threads.
251
  qk_max = VLLM_SHFL_SYNC(qk_max, 0);
Woosuk Kwon's avatar
Woosuk Kwon committed
252
253
254

  // Get the sum of the exp values.
  float exp_sum = 0.f;
255
  for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
Woosuk Kwon's avatar
Woosuk Kwon committed
256
257
258
259
260
261
262
263
    float val = __expf(logits[i] - qk_max);
    logits[i] = val;
    exp_sum += val;
  }
  exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);

  // Compute softmax.
  const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
264
  for (int i = thread_idx; i < num_tokens; i += NUM_THREADS) {
Woosuk Kwon's avatar
Woosuk Kwon committed
265
266
267
268
    logits[i] *= inv_sum;
  }
  __syncthreads();

269
270
271
272
273
274
275
276
277
278
279
280
  // If partitioning is enabled, store the max logit and exp_sum.
  if (USE_PARTITIONING && thread_idx == 0) {
    float* max_logits_ptr = max_logits + seq_idx * num_heads * max_num_partitions
                                       + head_idx * max_num_partitions
                                       + partition_idx;
    *max_logits_ptr = qk_max;
    float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions
                                   + head_idx * max_num_partitions
                                   + partition_idx;
    *exp_sums_ptr = exp_sum;
  }

Woosuk Kwon's avatar
Woosuk Kwon committed
281
282
283
284
285
286
287
288
  // Each thread will fetch 16 bytes from the value cache at a time.
  constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
  using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
  using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
  using Float_L_vec = typename FloatVec<L_vec>::Type;

  constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
  constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
289
  constexpr int NUM_ROWS_PER_THREAD = DIVIDE_ROUND_UP(HEAD_SIZE, NUM_ROWS_PER_ITER);
Woosuk Kwon's avatar
Woosuk Kwon committed
290
291
292
293
294
295
296
297

  // NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
  float accs[NUM_ROWS_PER_THREAD];
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    accs[i] = 0.f;
  }

298
299
  scalar_t zero_value;
  zero(zero_value);
300
  for (int block_idx = start_block_idx + warp_idx; block_idx < end_block_idx; block_idx += NUM_WARPS) {
301
302
303
304
    // NOTE(woosuk): The block number is stored in int32. However, we cast it to int64
    // because int32 can lead to overflow when this variable is multiplied by large numbers
    // (e.g., kv_block_stride).
    const int64_t physical_block_number = static_cast<int64_t>(block_table[block_idx]);
Woosuk Kwon's avatar
Woosuk Kwon committed
305
306
307
    const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
    const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
    L_vec logits_vec;
308
    from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx - start_token_idx));
Woosuk Kwon's avatar
Woosuk Kwon committed
309

Zhuohan Li's avatar
Zhuohan Li committed
310
311
    const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
                                    + kv_head_idx * kv_head_stride;
Woosuk Kwon's avatar
Woosuk Kwon committed
312
313
314
315
316
317
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE) {
        const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
        V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
318
        if (block_idx == num_context_blocks - 1) {
319
320
321
322
323
          // NOTE(woosuk): When v_vec contains the tokens that are out of the context,
          // we should explicitly zero out the values since they may contain NaNs.
          // See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
          scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
324
          for (int j = 0; j < V_VEC_SIZE; j++) {
325
326
327
            v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
          }
        }
Woosuk Kwon's avatar
Woosuk Kwon committed
328
329
330
331
332
333
334
335
336
337
338
        accs[i] += dot(logits_vec, v_vec);
      }
    }
  }

  // Perform reduction within each warp.
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    float acc = accs[i];
#pragma unroll
    for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
339
      acc += VLLM_SHFL_XOR_SYNC(acc, mask);
Woosuk Kwon's avatar
Woosuk Kwon committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    }
    accs[i] = acc;
  }

  // NOTE(woosuk): A barrier is required because the shared memory space for logits
  // is reused for the output.
  __syncthreads();

  // Perform reduction across warps.
  float* out_smem = reinterpret_cast<float*>(shared_mem);
#pragma unroll
  for (int i = NUM_WARPS; i > 1; i /= 2) {
    int mid = i / 2;
    // Upper warps write to shared memory.
    if (warp_idx >= mid && warp_idx < i) {
      float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          dst[row_idx] = accs[i];
        }
      }
    }
    __syncthreads();

    // Lower warps update the output.
    if (warp_idx < mid) {
      const float* src = &out_smem[warp_idx * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          accs[i] += src[row_idx];
        }
      }
    }
    __syncthreads();
  }

  // Write the final output.
  if (warp_idx == 0) {
382
383
384
    scalar_t* out_ptr = out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
                            + head_idx * max_num_partitions * HEAD_SIZE
                            + partition_idx * HEAD_SIZE;
Woosuk Kwon's avatar
Woosuk Kwon committed
385
386
387
388
389
390
391
392
393
394
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
        from_float(*(out_ptr + row_idx), accs[i]);
      }
    }
  }
}

395
396
397
398
399
400
401
402
403
404
405
// Grid: (num_heads, num_seqs, 1).
template<
  typename scalar_t,
  int HEAD_SIZE,
  int BLOCK_SIZE,
  int NUM_THREADS>
__global__ void paged_attention_v1_kernel(
  scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ k_cache,   // [num_blocks, num_kv_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ v_cache,   // [num_blocks, num_kv_heads, head_size, block_size]
406
  const int num_kv_heads,                 // [num_heads]
407
408
409
410
411
412
413
414
415
416
  const float scale,
  const int* __restrict__ block_tables,   // [num_seqs, max_num_blocks_per_seq]
  const int* __restrict__ context_lens,   // [num_seqs]
  const int max_num_blocks_per_seq,
  const float* __restrict__ alibi_slopes, // [num_heads]
  const int q_stride,
  const int kv_block_stride,
  const int kv_head_stride) {
  paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
    /* exp_sums */ nullptr, /* max_logits */ nullptr,
417
    out, q, k_cache, v_cache, num_kv_heads, scale, block_tables, context_lens,
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    max_num_blocks_per_seq, alibi_slopes, q_stride, kv_block_stride, kv_head_stride);
}

// Grid: (num_heads, num_seqs, max_num_partitions).
template<
  typename scalar_t,
  int HEAD_SIZE,
  int BLOCK_SIZE,
  int NUM_THREADS,
  int PARTITION_SIZE>
__global__ void paged_attention_v2_kernel(
  float* __restrict__ exp_sums,           // [num_seqs, num_heads, max_num_partitions]
  float* __restrict__ max_logits,         // [num_seqs, num_heads, max_num_partitions]
  scalar_t* __restrict__ tmp_out,         // [num_seqs, num_heads, max_num_partitions, head_size]
  const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ k_cache,   // [num_blocks, num_kv_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ v_cache,   // [num_blocks, num_kv_heads, head_size, block_size]
435
  const int num_kv_heads,                 // [num_heads]
436
437
438
439
440
441
442
443
444
  const float scale,
  const int* __restrict__ block_tables,   // [num_seqs, max_num_blocks_per_seq]
  const int* __restrict__ context_lens,   // [num_seqs]
  const int max_num_blocks_per_seq,
  const float* __restrict__ alibi_slopes, // [num_heads]
  const int q_stride,
  const int kv_block_stride,
  const int kv_head_stride) {
  paged_attention_kernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE>(
445
    exp_sums, max_logits, tmp_out, q, k_cache, v_cache, num_kv_heads, scale,
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
    block_tables, context_lens, max_num_blocks_per_seq, alibi_slopes,
    q_stride, kv_block_stride, kv_head_stride);
}

// Grid: (num_heads, num_seqs).
template<
  typename scalar_t,
  int HEAD_SIZE,
  int NUM_THREADS,
  int PARTITION_SIZE>
__global__ void paged_attention_v2_reduce_kernel(
  scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
  const float* __restrict__ exp_sums,     // [num_seqs, num_heads, max_num_partitions]
  const float* __restrict__ max_logits,   // [num_seqs, num_heads, max_num_partitions]
  const scalar_t* __restrict__ tmp_out,   // [num_seqs, num_heads, max_num_partitions, head_size]
  const int* __restrict__ context_lens,   // [num_seqs]
  const int max_num_partitions) {
  const int num_heads = gridDim.x;
  const int head_idx = blockIdx.x;
  const int seq_idx = blockIdx.y;
  const int context_len = context_lens[seq_idx];
  const int num_partitions = DIVIDE_ROUND_UP(context_len, PARTITION_SIZE);
  if (num_partitions == 1) {
    // No need to reduce. Only copy tmp_out to out.
    scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
    const scalar_t* tmp_out_ptr = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
                                          + head_idx * max_num_partitions * HEAD_SIZE;
    for (int i = threadIdx.x; i < HEAD_SIZE; i += blockDim.x) {
      out_ptr[i] = tmp_out_ptr[i];
    }
    // Terminate the thread block.
    return;
  }

  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  const int warp_idx = threadIdx.x / WARP_SIZE;
  const int lane = threadIdx.x % WARP_SIZE;

  // Size: 2 * num_partitions.
  extern __shared__ char shared_mem[];
  // Workspace for reduction.
  __shared__ float red_smem[2 * NUM_WARPS];

  // Load max logits to shared memory.
  float* shared_max_logits = reinterpret_cast<float*>(shared_mem);
  const float* max_logits_ptr = max_logits + seq_idx * num_heads * max_num_partitions
                                           + head_idx * max_num_partitions;
  float max_logit = -FLT_MAX;
  for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
    const float l = max_logits_ptr[i];
    shared_max_logits[i] = l;
    max_logit = fmaxf(max_logit, l);
  }
  __syncthreads();

  // Get the global max logit.
  // Reduce within the warp.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
505
    max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
506
507
508
509
510
511
512
513
514
  }
  if (lane == 0) {
    red_smem[warp_idx] = max_logit;
  }
  __syncthreads();
  // Reduce across warps.
  max_logit = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
515
    max_logit = fmaxf(max_logit, VLLM_SHFL_XOR_SYNC(max_logit, mask));
516
517
  }
  // Broadcast the max value to all threads.
518
  max_logit = VLLM_SHFL_SYNC(max_logit, 0);
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548

  // Load rescaled exp sums to shared memory.
  float* shared_exp_sums = reinterpret_cast<float*>(shared_mem + sizeof(float) * num_partitions);
  const float* exp_sums_ptr = exp_sums + seq_idx * num_heads * max_num_partitions
                                       + head_idx * max_num_partitions;
  float global_exp_sum = 0.0f;
  for (int i = threadIdx.x; i < num_partitions; i += blockDim.x) {
    float l = shared_max_logits[i];
    float rescaled_exp_sum = exp_sums_ptr[i] * expf(l - max_logit);
    global_exp_sum += rescaled_exp_sum;
    shared_exp_sums[i] = rescaled_exp_sum;
  }
  __syncthreads();
  global_exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], global_exp_sum);
  const float inv_global_exp_sum = __fdividef(1.0f, global_exp_sum + 1e-6f);

  // Aggregate tmp_out to out.
  const scalar_t* tmp_out_ptr = tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE
                                        + head_idx * max_num_partitions * HEAD_SIZE;
  scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
  for (int i = threadIdx.x; i < HEAD_SIZE; i += NUM_THREADS) {
    float acc = 0.0f;
    for (int j = 0; j < num_partitions; ++j) {
      acc += to_float(tmp_out_ptr[j * HEAD_SIZE + i]) * shared_exp_sums[j] * inv_global_exp_sum;
    }
    from_float(out_ptr[i], acc);
  }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
549
} // namespace vllm
Woosuk Kwon's avatar
Woosuk Kwon committed
550

551
#define LAUNCH_PAGED_ATTENTION_V1(HEAD_SIZE)                                                  \
552
553
554
  VLLM_DevFuncAttribute_SET_MaxDynamicSharedMemorySize(                                       \
    ((void*)vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>),          \
    shared_mem_size);                                                                         \
555
  vllm::paged_attention_v1_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>                      \
Woosuk Kwon's avatar
Woosuk Kwon committed
556
557
558
559
560
  <<<grid, block, shared_mem_size, stream>>>(                                                 \
    out_ptr,                                                                                  \
    query_ptr,                                                                                \
    key_cache_ptr,                                                                            \
    value_cache_ptr,                                                                          \
561
    num_kv_heads,                                                                             \
Woosuk Kwon's avatar
Woosuk Kwon committed
562
563
564
565
    scale,                                                                                    \
    block_tables_ptr,                                                                         \
    context_lens_ptr,                                                                         \
    max_num_blocks_per_seq,                                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
566
    alibi_slopes_ptr,                                                                         \
Zhuohan Li's avatar
Zhuohan Li committed
567
568
569
    q_stride,                                                                                 \
    kv_block_stride,                                                                          \
    kv_head_stride);
Woosuk Kwon's avatar
Woosuk Kwon committed
570
571
572
573
574
575

// TODO(woosuk): Tune NUM_THREADS.
template<
  typename T,
  int BLOCK_SIZE,
  int NUM_THREADS = 128>
576
void paged_attention_v1_launcher(
Woosuk Kwon's avatar
Woosuk Kwon committed
577
578
579
580
  torch::Tensor& out,
  torch::Tensor& query,
  torch::Tensor& key_cache,
  torch::Tensor& value_cache,
581
  int num_kv_heads,
Woosuk Kwon's avatar
Woosuk Kwon committed
582
583
584
  float scale,
  torch::Tensor& block_tables,
  torch::Tensor& context_lens,
Woosuk Kwon's avatar
Woosuk Kwon committed
585
586
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
Woosuk Kwon's avatar
Woosuk Kwon committed
587
588
589
590
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
Zhuohan Li's avatar
Zhuohan Li committed
591
592
593
  int q_stride = query.stride(0);
  int kv_block_stride = key_cache.stride(0);
  int kv_head_stride = key_cache.stride(1);
Woosuk Kwon's avatar
Woosuk Kwon committed
594
595
596
597

  int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
  assert(head_size % thread_group_size == 0);

Woosuk Kwon's avatar
Woosuk Kwon committed
598
599
600
601
602
  // NOTE: alibi_slopes is optional.
  const float* alibi_slopes_ptr = alibi_slopes ?
    reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
    : nullptr;

Woosuk Kwon's avatar
Woosuk Kwon committed
603
604
605
606
607
608
609
610
  T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
  T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
  T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
  T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
  int* block_tables_ptr = block_tables.data_ptr<int>();
  int* context_lens_ptr = context_lens.data_ptr<int>();

  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
611
  int padded_max_context_len = DIVIDE_ROUND_UP(max_context_len, BLOCK_SIZE) * BLOCK_SIZE;
612
  int logits_size = padded_max_context_len * sizeof(float);
Woosuk Kwon's avatar
Woosuk Kwon committed
613
  int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
614
615
  // Python-side check in vllm.worker.worker._check_if_can_support_max_seq_len
  // Keep that in sync with the logic here!
Woosuk Kwon's avatar
Woosuk Kwon committed
616
617
  int shared_mem_size = std::max(logits_size, outputs_size);

618
619
  dim3 grid(num_heads, num_seqs, 1);
  dim3 block(NUM_THREADS);
620
  const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  switch (head_size) {
    // NOTE(woosuk): To reduce the compilation time, we only compile for the
    // head sizes that we use in the model. However, we can easily extend this
    // to support any head size which is a multiple of 16.
    case 64:
      LAUNCH_PAGED_ATTENTION_V1(64);
      break;
    case 80:
      LAUNCH_PAGED_ATTENTION_V1(80);
      break;
    case 96:
      LAUNCH_PAGED_ATTENTION_V1(96);
      break;
    case 112:
      LAUNCH_PAGED_ATTENTION_V1(112);
      break;
    case 128:
      LAUNCH_PAGED_ATTENTION_V1(128);
      break;
    case 256:
      LAUNCH_PAGED_ATTENTION_V1(256);
      break;
    default:
      TORCH_CHECK(false, "Unsupported head size: ", head_size);
      break;
  }
}

#define CALL_V1_LAUNCHER(T, BLOCK_SIZE)                             \
  paged_attention_v1_launcher<T, BLOCK_SIZE>(                       \
    out,                                                            \
    query,                                                          \
    key_cache,                                                      \
    value_cache,                                                    \
656
    num_kv_heads,                                                   \
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
    scale,                                                          \
    block_tables,                                                   \
    context_lens,                                                   \
    max_context_len,                                                \
    alibi_slopes);

// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
#define CALL_V1_LAUNCHER_BLOCK_SIZE(T)                              \
  switch (block_size) {                                             \
    case 8:                                                         \
      CALL_V1_LAUNCHER(T, 8);                                       \
      break;                                                        \
    case 16:                                                        \
      CALL_V1_LAUNCHER(T, 16);                                      \
      break;                                                        \
    case 32:                                                        \
      CALL_V1_LAUNCHER(T, 32);                                      \
      break;                                                        \
    default:                                                        \
      TORCH_CHECK(false, "Unsupported block size: ", block_size);   \
      break;                                                        \
  }

void paged_attention_v1(
  torch::Tensor& out,             // [num_seqs, num_heads, head_size]
  torch::Tensor& query,           // [num_seqs, num_heads, head_size]
  torch::Tensor& key_cache,       // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,     // [num_blocks, num_heads, head_size, block_size]
686
  int num_kv_heads,               // [num_heads]
687
688
689
690
691
692
693
694
695
696
  float scale,
  torch::Tensor& block_tables,    // [num_seqs, max_num_blocks_per_seq]
  torch::Tensor& context_lens,    // [num_seqs]
  int block_size,
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
  if (query.dtype() == at::ScalarType::Float) {
    CALL_V1_LAUNCHER_BLOCK_SIZE(float);
  } else if (query.dtype() == at::ScalarType::Half) {
    CALL_V1_LAUNCHER_BLOCK_SIZE(uint16_t);
zhuwenwen's avatar
zhuwenwen committed
697
698
  // } else if (query.dtype() == at::ScalarType::BFloat16) {
  //   CALL_V1_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
699
700
701
702
703
704
705
706
707
708
709
710
711
712
  } else {
    TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
  }
}

#define LAUNCH_PAGED_ATTENTION_V2(HEAD_SIZE)                                                  \
  vllm::paged_attention_v2_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS, PARTITION_SIZE>      \
  <<<grid, block, shared_mem_size, stream>>>(                                                 \
    exp_sums_ptr,                                                                             \
    max_logits_ptr,                                                                           \
    tmp_out_ptr,                                                                              \
    query_ptr,                                                                                \
    key_cache_ptr,                                                                            \
    value_cache_ptr,                                                                          \
713
    num_kv_heads,                                                                             \
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
    scale,                                                                                    \
    block_tables_ptr,                                                                         \
    context_lens_ptr,                                                                         \
    max_num_blocks_per_seq,                                                                   \
    alibi_slopes_ptr,                                                                         \
    q_stride,                                                                                 \
    kv_block_stride,                                                                          \
    kv_head_stride);                                                                          \
  vllm::paged_attention_v2_reduce_kernel<T, HEAD_SIZE, NUM_THREADS, PARTITION_SIZE>           \
  <<<reduce_grid, block, reduce_shared_mem_size, stream>>>(                                   \
    out_ptr,                                                                                  \
    exp_sums_ptr,                                                                             \
    max_logits_ptr,                                                                           \
    tmp_out_ptr,                                                                              \
    context_lens_ptr,                                                                         \
    max_num_partitions);

template<
  typename T,
  int BLOCK_SIZE,
  int NUM_THREADS = 128,
  int PARTITION_SIZE = 512>
void paged_attention_v2_launcher(
  torch::Tensor& out,
  torch::Tensor& exp_sums,
  torch::Tensor& max_logits,
  torch::Tensor& tmp_out,
  torch::Tensor& query,
  torch::Tensor& key_cache,
  torch::Tensor& value_cache,
744
  int num_kv_heads,
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
  float scale,
  torch::Tensor& block_tables,
  torch::Tensor& context_lens,
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
  int q_stride = query.stride(0);
  int kv_block_stride = key_cache.stride(0);
  int kv_head_stride = key_cache.stride(1);

  int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
  assert(head_size % thread_group_size == 0);

  // NOTE: alibi_slopes is optional.
  const float* alibi_slopes_ptr = alibi_slopes ?
    reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
    : nullptr;

  T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
  float* exp_sums_ptr = reinterpret_cast<float*>(exp_sums.data_ptr());
  float* max_logits_ptr = reinterpret_cast<float*>(max_logits.data_ptr());
  T* tmp_out_ptr = reinterpret_cast<T*>(tmp_out.data_ptr());
  T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
  T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
  T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
  int* block_tables_ptr = block_tables.data_ptr<int>();
  int* context_lens_ptr = context_lens.data_ptr<int>();

  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  int max_num_partitions = DIVIDE_ROUND_UP(max_context_len, PARTITION_SIZE);
  int logits_size = PARTITION_SIZE * sizeof(float);
  int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);

  // For paged attention v2 kernel.
  dim3 grid(num_heads, num_seqs, max_num_partitions);
  int shared_mem_size = std::max(logits_size, outputs_size);
  // For paged attention v2 reduce kernel.
  dim3 reduce_grid(num_heads, num_seqs);
  int reduce_shared_mem_size = 2 * max_num_partitions * sizeof(float);

Woosuk Kwon's avatar
Woosuk Kwon committed
788
  dim3 block(NUM_THREADS);
789
  const at::cuda::OptionalCUDAGuard device_guard(device_of(query));
Woosuk Kwon's avatar
Woosuk Kwon committed
790
791
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  switch (head_size) {
792
793
794
    // NOTE(woosuk): To reduce the compilation time, we only compile for the
    // head sizes that we use in the model. However, we can easily extend this
    // to support any head size which is a multiple of 16.
Woosuk Kwon's avatar
Woosuk Kwon committed
795
    case 64:
796
      LAUNCH_PAGED_ATTENTION_V2(64);
Woosuk Kwon's avatar
Woosuk Kwon committed
797
798
      break;
    case 80:
799
      LAUNCH_PAGED_ATTENTION_V2(80);
Woosuk Kwon's avatar
Woosuk Kwon committed
800
801
      break;
    case 96:
802
      LAUNCH_PAGED_ATTENTION_V2(96);
Woosuk Kwon's avatar
Woosuk Kwon committed
803
      break;
804
    case 112:
805
      LAUNCH_PAGED_ATTENTION_V2(112);
806
      break;
Woosuk Kwon's avatar
Woosuk Kwon committed
807
    case 128:
808
      LAUNCH_PAGED_ATTENTION_V2(128);
Woosuk Kwon's avatar
Woosuk Kwon committed
809
      break;
810
    case 256:
811
      LAUNCH_PAGED_ATTENTION_V2(256);
812
      break;
Woosuk Kwon's avatar
Woosuk Kwon committed
813
814
815
816
817
818
    default:
      TORCH_CHECK(false, "Unsupported head size: ", head_size);
      break;
  }
}

819
820
#define CALL_V2_LAUNCHER(T, BLOCK_SIZE)                             \
  paged_attention_v2_launcher<T, BLOCK_SIZE>(                       \
Woosuk Kwon's avatar
Woosuk Kwon committed
821
    out,                                                            \
822
823
824
    exp_sums,                                                       \
    max_logits,                                                     \
    tmp_out,                                                        \
Woosuk Kwon's avatar
Woosuk Kwon committed
825
826
827
    query,                                                          \
    key_cache,                                                      \
    value_cache,                                                    \
828
    num_kv_heads,                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
829
830
831
    scale,                                                          \
    block_tables,                                                   \
    context_lens,                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
832
833
    max_context_len,                                                \
    alibi_slopes);
Woosuk Kwon's avatar
Woosuk Kwon committed
834

Woosuk Kwon's avatar
Woosuk Kwon committed
835
836
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
837
#define CALL_V2_LAUNCHER_BLOCK_SIZE(T)                              \
Woosuk Kwon's avatar
Woosuk Kwon committed
838
839
  switch (block_size) {                                             \
    case 8:                                                         \
840
      CALL_V2_LAUNCHER(T, 8);                                       \
Woosuk Kwon's avatar
Woosuk Kwon committed
841
842
      break;                                                        \
    case 16:                                                        \
843
      CALL_V2_LAUNCHER(T, 16);                                      \
Woosuk Kwon's avatar
Woosuk Kwon committed
844
845
      break;                                                        \
    case 32:                                                        \
846
      CALL_V2_LAUNCHER(T, 32);                                      \
Woosuk Kwon's avatar
Woosuk Kwon committed
847
848
849
850
851
852
      break;                                                        \
    default:                                                        \
      TORCH_CHECK(false, "Unsupported block size: ", block_size);   \
      break;                                                        \
  }

853
void paged_attention_v2(
Woosuk Kwon's avatar
Woosuk Kwon committed
854
  torch::Tensor& out,             // [num_seqs, num_heads, head_size]
855
856
857
  torch::Tensor& exp_sums,        // [num_seqs, num_heads, max_num_partitions]
  torch::Tensor& max_logits,      // [num_seqs, num_heads, max_num_partitions]
  torch::Tensor& tmp_out,         // [num_seqs, num_heads, max_num_partitions, head_size]
Woosuk Kwon's avatar
Woosuk Kwon committed
858
859
860
  torch::Tensor& query,           // [num_seqs, num_heads, head_size]
  torch::Tensor& key_cache,       // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,     // [num_blocks, num_heads, head_size, block_size]
861
  int num_kv_heads,               // [num_heads]
Woosuk Kwon's avatar
Woosuk Kwon committed
862
863
864
865
  float scale,
  torch::Tensor& block_tables,    // [num_seqs, max_num_blocks_per_seq]
  torch::Tensor& context_lens,    // [num_seqs]
  int block_size,
Woosuk Kwon's avatar
Woosuk Kwon committed
866
867
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
Woosuk Kwon's avatar
Woosuk Kwon committed
868
  if (query.dtype() == at::ScalarType::Float) {
869
    CALL_V2_LAUNCHER_BLOCK_SIZE(float);
Woosuk Kwon's avatar
Woosuk Kwon committed
870
  } else if (query.dtype() == at::ScalarType::Half) {
871
    CALL_V2_LAUNCHER_BLOCK_SIZE(uint16_t);
zhuwenwen's avatar
zhuwenwen committed
872
873
  // } else if (query.dtype() == at::ScalarType::BFloat16) {
  //   CALL_V2_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
Woosuk Kwon's avatar
Woosuk Kwon committed
874
875
876
877
878
879
880
881
  } else {
    TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
  }
}

#undef WARP_SIZE
#undef MAX
#undef MIN
882
#undef DIVIDE_ROUND_UP