api_server.py 12 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
3
4
5
6
7
8
9
# Adapted from https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py

import argparse
from http import HTTPStatus
import json
import time
from typing import AsyncGenerator, Dict, List, Optional

import fastapi
10
from fastapi import BackgroundTasks, Request
Zhuohan Li's avatar
Zhuohan Li committed
11
12
13
14
15
16
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn

from cacheflow.outputs import RequestOutput
17
from cacheflow.server.arg_utils import AsyncServerArgs
18
from cacheflow.server.async_llm_server import AsyncLLMEngine
Zhuohan Li's avatar
Zhuohan Li committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from cacheflow.server.tokenizer_utils import get_tokenizer
from cacheflow.logger import init_logger
from cacheflow.sampling_params import SamplingParams
from cacheflow.utils import random_uuid
from cacheflow.entrypoints.openai.protocol import (
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    ErrorResponse,
    LogProbs,
    ModelCard,
    ModelList,
    ModelPermission,
    UsageInfo,
)

37
TIMEOUT_KEEP_ALIVE = 5 # seconds
Zhuohan Li's avatar
Zhuohan Li committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

logger = init_logger(__name__)
served_model = None
app = fastapi.FastAPI()


def create_error_response(status_code: HTTPStatus,
                          message: str) -> JSONResponse:
    return JSONResponse(
        ErrorResponse(message=message, type="invalid_request_error").dict(),
        status_code=status_code.value
    )


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc):
    return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))


async def check_model(request) -> Optional[JSONResponse]:
    if request.model == served_model:
        return
    ret = create_error_response(
        HTTPStatus.NOT_FOUND,
        f"The model `{request.model}` does not exist.",
    )
    return ret


@app.get("/v1/models")
async def show_available_models():
    """Show available models. Right now we only have one model."""
    model_cards = [ModelCard(id=served_model, root=served_model,
                             permission=[ModelPermission()])]
    return ModelList(data=model_cards)


def create_logprobs(token_ids: List[int],
                    id_logprobs: List[Dict[int, float]],
                    initial_text_offset: int = 0) -> LogProbs:
    """Create OpenAI-style logprobs."""
    logprobs = LogProbs()
    last_token_len = 0
    for token_id, id_logprob in zip(token_ids, id_logprobs):
        token = tokenizer.convert_ids_to_tokens(token_id)
        logprobs.tokens.append(token)
        logprobs.token_logprobs.append(id_logprob[token_id])
        if len(logprobs.text_offset) == 0:
            logprobs.text_offset.append(initial_text_offset)
        else:
            logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len)
        last_token_len = len(token)

        logprobs.top_logprobs.append(
            {tokenizer.convert_ids_to_tokens(i): p
             for i, p in id_logprob.items()})
    return logprobs


@app.post("/v1/completions")
98
async def create_completion(raw_request: Request):
99
100
101
102
103
104
105
106
107
108
109
110
    """Completion API similar to OpenAI's API.

    See https://platform.openai.com/docs/api-reference/completions/create
    for the API specification. This API mimics the OpenAI Completion API.

    NOTE: Currently we do not support the following features:
        - echo (since the cacheflow server does not currently support
          getting the logprobs of prompt tokens)
        - suffix (the language models we currently support do not support
          suffix)
        - logit_bias (to be supported in cacheflow server)
    """
111
    request = CompletionRequest(**await raw_request.json())
Zhuohan Li's avatar
Zhuohan Li committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    logger.info(f"Received completion request: {request}")

    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    if request.echo:
        # We do not support echo since the cacheflow server does not
        # currently support getting the logprobs of prompt tokens.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "echo is not currently supported")

    if request.suffix is not None:
        # The language models we currently support do not support suffix.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                    "suffix is not currently supported")

    if request.logit_bias is not None:
        # TODO: support logit_bias in cacheflow server.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "logit_bias is not currently supported")

    model_name = request.model
    request_id = f"cmpl-{random_uuid()}"
    prompt = request.prompt
    created_time = int(time.time())
    try:
        sampling_params = SamplingParams(
            n=request.n,
            best_of=request.best_of,
            presence_penalty=request.presence_penalty,
            frequency_penalty=request.frequency_penalty,
            temperature=request.temperature,
            top_p=request.top_p,
            top_k=request.top_k,
            stop=request.stop,
            ignore_eos=request.ignore_eos,
            max_tokens=request.max_tokens,
            logprobs=request.logprobs,
            use_beam_search=request.use_beam_search,
        )
    except ValueError as e:
        return create_error_response(HTTPStatus.BAD_REQUEST, str(e))

    result_generator = server.generate(prompt, sampling_params,
157
                                       request_id)
Zhuohan Li's avatar
Zhuohan Li committed
158
159
160
161
162
163
164

    # Similar to the OpenAI API, when n != best_of, we do not stream the
    # results. In addition, we do not stream the results when use beam search.
    stream = (request.stream and
              (request.best_of is None or request.n == request.best_of) and
              not request.use_beam_search)

165
166
167
    async def abort_request() -> None:
        await server.abort(request_id)

Zhuohan Li's avatar
Zhuohan Li committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def create_stream_response_json(index: int,
                                    text: str,
                                    logprobs: Optional[LogProbs] = None,
                                    finish_reason: Optional[str] = None) -> str:
        choice_data = CompletionResponseStreamChoice(
            index=index,
            text=text,
            logprobs=logprobs,
            finish_reason=finish_reason,
        )
        response = CompletionStreamResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=[choice_data],
        )
        response_json = response.json(ensure_ascii=False)

        return response_json

    async def completion_stream_generator() -> AsyncGenerator[str, None]:
        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        async for res in result_generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index
                delta_text = output.text[len(previous_texts[i]):]
                if request.logprobs is not None:
                    logprobs = create_logprobs(
                        output.token_ids[previous_num_tokens[i]:],
                        output.logprobs[previous_num_tokens[i]:],
                        len(previous_texts[i]))
                else:
                    logprobs = None
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)
                response_json = create_stream_response_json(
                    index=i,
                    text=delta_text,
                    logprobs=logprobs,
                )
                yield f"data: {response_json}\n\n"
                if output.finish_reason is not None:
                    logprobs = LogProbs() if request.logprobs is not None else None
                    response_json = create_stream_response_json(
                        index=i,
                        text="",
                        logprobs=logprobs,
                        finish_reason=output.finish_reason,
                    )
                    yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"

    # Streaming response
    if stream:
224
225
226
        background_tasks = BackgroundTasks()
        # Abort the request if the client disconnects.
        background_tasks.add_task(abort_request)
Zhuohan Li's avatar
Zhuohan Li committed
227
        return StreamingResponse(completion_stream_generator(),
228
229
                                 media_type="text/event-stream",
                                 background=background_tasks)
Zhuohan Li's avatar
Zhuohan Li committed
230
231
232
233

    # Non-streaming response
    final_res: RequestOutput = None
    async for res in result_generator:
234
235
        if await raw_request.is_disconnected():
            # Abort the request if the client disconnects.
236
            await abort_request()
237
238
            return create_error_response(HTTPStatus.BAD_REQUEST,
                                         "Client disconnected")
Zhuohan Li's avatar
Zhuohan Li committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        final_res = res
    assert final_res is not None
    choices = []
    for output in final_res.outputs:
        if request.logprobs is not None:
            logprobs = create_logprobs(output.token_ids, output.logprobs)
        else:
            logprobs = None
        choice_data = CompletionResponseChoice(
            index=output.index,
            text=output.text,
            logprobs=logprobs,
            finish_reason=output.finish_reason,
        )
        choices.append(choice_data)

    num_prompt_tokens = len(final_res.prompt_token_ids)
    num_generated_tokens = sum(len(output.token_ids)
                               for output in final_res.outputs)
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    response = CompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )

    if request.stream:
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        response_json = response.json(ensure_ascii=False)
        async def fake_stream_generator() -> AsyncGenerator[str, None]:
            yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"
        return StreamingResponse(fake_stream_generator(),
                                 media_type="text/event-stream")

    return response


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="CacheFlow OpenAI-Compatible RESTful API server."
    )
    parser.add_argument("--host", type=str, default="localhost", help="host name")
    parser.add_argument("--port", type=int, default=8000, help="port number")
    parser.add_argument(
        "--allow-credentials", action="store_true", help="allow credentials"
    )
    parser.add_argument(
        "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
    )
    parser.add_argument(
        "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
    )
    parser.add_argument(
        "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
    )
    parser.add_argument("--served-model-name", type=str, default=None,
                        help="The model name used in the API. If not specified, "
                             "the model name will be the same as the "
                             "huggingface name.")
306
    parser = AsyncServerArgs.add_cli_args(parser)
Zhuohan Li's avatar
Zhuohan Li committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    args = parser.parse_args()

    app.add_middleware(
        CORSMiddleware,
        allow_origins=args.allowed_origins,
        allow_credentials=args.allow_credentials,
        allow_methods=args.allowed_methods,
        allow_headers=args.allowed_headers,
    )

    logger.info(f"args: {args}")

    served_model = args.served_model_name or args.model

321
    server_args = AsyncServerArgs.from_cli_args(args)
322
    server = AsyncLLMEngine.from_server_args(server_args)
Zhuohan Li's avatar
Zhuohan Li committed
323
324
325
326

    # A separate tokenizer to map token IDs to strings.
    tokenizer = get_tokenizer(args.model)

327
328
    uvicorn.run(app, host=args.host, port=args.port, log_level="info",
                timeout_keep_alive=TIMEOUT_KEEP_ALIVE)