llama.py 10.3 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
2
3
4
5
6
7
8
"""1D LLaMA model compatible with HuggingFace weights."""
from typing import Dict, List, Optional, Tuple

import torch
from torch import nn
from transformers import LlamaConfig

from cacheflow.models import InputMetadata
Woosuk Kwon's avatar
Woosuk Kwon committed
9
from cacheflow.models.activation import SiluAndMul
10
from cacheflow.models.attention import LlamaCacheFlowAttention
11
from cacheflow.models.layernorm import RMSNorm
Woosuk Kwon's avatar
Woosuk Kwon committed
12
from cacheflow.models.sample import Sampler
13
14
from cacheflow.models.utils import (hf_model_weights_iterator,
                                    load_tensor_parallel_weights)
Woosuk Kwon's avatar
Woosuk Kwon committed
15
16
17
18
19
20
21
22
23
24
25
from cacheflow.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
                                                      ColumnParallelLinear,
                                                      RowParallelLinear)
from cacheflow.sequence import SequenceOutputs

KVCache = Tuple[torch.Tensor, torch.Tensor]


class LlamaMLP(nn.Module):
26

Woosuk Kwon's avatar
Woosuk Kwon committed
27
28
29
30
31
32
33
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
34
35
36
        self.gate_up_proj = ColumnParallelLinear(hidden_size, 2 * intermediate_size,
                                                 bias=False, gather_output=False,
                                                 perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
37
38
39
        self.down_proj = RowParallelLinear(intermediate_size, hidden_size,
                                           bias=False, input_is_parallel=True,
                                           perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
40
41
42
43
        if hidden_act != 'silu':
            raise ValueError(f'Unsupported activation: {hidden_act}. '
                             'Only silu is supported for now.')
        self.act_fn = SiluAndMul()
Woosuk Kwon's avatar
Woosuk Kwon committed
44
45

    def forward(self, x):
46
        gate_up, _ = self.gate_up_proj(x)
Woosuk Kwon's avatar
Woosuk Kwon committed
47
        x = self.act_fn(gate_up)
Woosuk Kwon's avatar
Woosuk Kwon committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
        x, _ = self.down_proj(x)
        return x


class LlamaAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
        self.head_dim = hidden_size // self.total_num_heads
        self.scaling = self.head_dim ** -0.5

68
        self.qkv_proj = ColumnParallelLinear(
Woosuk Kwon's avatar
Woosuk Kwon committed
69
            hidden_size,
70
            3 * self.total_num_heads * self.head_dim,
Woosuk Kwon's avatar
Woosuk Kwon committed
71
72
73
74
75
76
77
78
79
80
81
            bias=False,
            gather_output=False,
            perform_initialization=False,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            input_is_parallel=True,
            perform_initialization=False,
        )
82
        self.attn = LlamaCacheFlowAttention(self.scaling, self.head_dim)
Woosuk Kwon's avatar
Woosuk Kwon committed
83
84
85
86
87
88
89
90
91

    def forward(
        self,
        positions: torch.LongTensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
92
        qkv, _ = self.qkv_proj(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
93
        q, k, v = qkv.chunk(chunks=3, dim=-1)
94
        k_cache, v_cache = kv_cache
Woosuk Kwon's avatar
Woosuk Kwon committed
95
        attn_output = self.attn(
96
            positions, q, k, v, k_cache, v_cache, input_metadata, cache_event)
Woosuk Kwon's avatar
Woosuk Kwon committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        output, _ = self.o_proj(attn_output)
        return output


class LlamaDecoderLayer(nn.Module):

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
        )
        self.mlp = LlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
115
116
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Woosuk Kwon's avatar
Woosuk Kwon committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

    def forward(
        self,
        positions: torch.LongTensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class LlamaModel(nn.Module):

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
                                                   perform_initialization=False)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
157
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Woosuk Kwon's avatar
Woosuk Kwon committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.norm(hidden_states)
        return hidden_states


class LlamaForCausalLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.model = LlamaModel(config)
        self.lm_head = ColumnParallelLinear(config.hidden_size,
                                            config.vocab_size,
                                            bias=False,
                                            gather_output=False,
                                            perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
195
        self.sampler = Sampler(config.vocab_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> Dict[int, SequenceOutputs]:
        hidden_states = self.model(
            input_ids, positions, kv_caches, input_metadata, cache_events)
        next_tokens = self.sampler(
            self.lm_head.weight, hidden_states, input_metadata)
        return next_tokens

    _column_parallel_weights = ["embed_tokens.weight", "lm_head.weight",
212
                                "qkv_proj.weight", "gate_proj.weight",
Woosuk Kwon's avatar
Woosuk Kwon committed
213
214
215
                                "up_proj.weight"]
    _row_parallel_weights = ["o_proj.weight", "down_proj.weight"]

216
217
218
    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
Woosuk Kwon's avatar
Woosuk Kwon committed
219
220
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266

        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if "rotary_emb.inv_freq" in name:
                continue

            is_attention_weight = False
            for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
                if att_weight_name not in name:
                    continue
                param = state_dict[name.replace(att_weight_name, "qkv_proj")]
                shard_size = param.shape[0] // 3
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_attention_weight = True
                break
            if is_attention_weight:
                continue

            is_gate_up_weight = False
            for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
                if weight_name not in name:
                    continue
                param = state_dict[name.replace(weight_name, "gate_up_proj")]
                shard_size = param.shape[0] // 2
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_gate_up_weight = True
                break
            if is_gate_up_weight:
                continue

            param = state_dict[name]
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
                                         self._row_parallel_weights)
267
268
269

    def initialize_dummy_weights(self) -> None:
        for param in self.state_dict().values():
270
            param.data.uniform_(-1e-3, 1e-3)