test_openai_server.py 11.7 KB
Newer Older
1
import os
2
import subprocess
3
import time
4
5
6
7
8
9

import sys
import pytest
import requests
import ray  # using Ray for overall ease of process management, parallel requests, and debugging.
import openai  # use the official client for correctness check
10
from huggingface_hub import snapshot_download  # downloading lora to test lora requests
11

12
13
from vllm.transformers_utils.tokenizer import get_tokenizer

14
15
MAX_SERVER_START_WAIT_S = 600  # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"  # any model with a chat template should work here
16
LORA_NAME = "typeof/zephyr-7b-beta-lora"  # technically this needs Mistral-7B-v0.1 as base, but we're not testing generation quality here
17
18
19
20
21
22
23
24

pytestmark = pytest.mark.asyncio


@ray.remote(num_gpus=1)
class ServerRunner:

    def __init__(self, args):
25
26
        env = os.environ.copy()
        env["PYTHONUNBUFFERED"] = "1"
27
28
        self.proc = subprocess.Popen(
            ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
29
            env=env,
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
            stdout=sys.stdout,
            stderr=sys.stderr,
        )
        self._wait_for_server()

    def ready(self):
        return True

    def _wait_for_server(self):
        # run health check
        start = time.time()
        while True:
            try:
                if requests.get(
                        "http://localhost:8000/health").status_code == 200:
                    break
            except Exception as err:
                if self.proc.poll() is not None:
                    raise RuntimeError("Server exited unexpectedly.") from err

                time.sleep(0.5)
                if time.time() - start > MAX_SERVER_START_WAIT_S:
                    raise RuntimeError(
                        "Server failed to start in time.") from err

    def __del__(self):
        if hasattr(self, "proc"):
            self.proc.terminate()


@pytest.fixture(scope="session")
61
62
63
64
65
66
def zephyr_lora_files():
    return snapshot_download(repo_id=LORA_NAME)


@pytest.fixture(scope="session")
def server(zephyr_lora_files):
67
68
69
70
71
72
73
    ray.init()
    server_runner = ServerRunner.remote([
        "--model",
        MODEL_NAME,
        "--dtype",
        "bfloat16",  # use half precision for speed and memory savings in CI environment
        "--max-model-len",
74
75
        "8192",
        "--enforce-eager",
76
77
78
79
80
81
82
83
84
85
86
        # lora config below
        "--enable-lora",
        "--lora-modules",
        f"zephyr-lora={zephyr_lora_files}",
        f"zephyr-lora2={zephyr_lora_files}",
        "--max-lora-rank",
        "64",
        "--max-cpu-loras",
        "2",
        "--max-num-seqs",
        "128"
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    ])
    ray.get(server_runner.ready.remote())
    yield server_runner
    ray.shutdown()


@pytest.fixture(scope="session")
def client():
    client = openai.AsyncOpenAI(
        base_url="http://localhost:8000/v1",
        api_key="token-abc123",
    )
    yield client


102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
async def test_check_models(server, client: openai.AsyncOpenAI):
    models = await client.models.list()
    models = models.data
    served_model = models[0]
    lora_models = models[1:]
    assert served_model.id == MODEL_NAME
    assert all(model.root == MODEL_NAME for model in models)
    assert lora_models[0].id == "zephyr-lora"
    assert lora_models[1].id == "zephyr-lora2"


@pytest.mark.parametrize(
    # first test base model, then test loras
    "model_name",
    [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_single_completion(server, client: openai.AsyncOpenAI,
                                 model_name: str):
    completion = await client.completions.create(model=model_name,
121
122
123
124
125
126
127
128
129
130
131
132
                                                 prompt="Hello, my name is",
                                                 max_tokens=5,
                                                 temperature=0.0)

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 1
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    assert completion.choices[0].finish_reason == "length"
    assert completion.usage == openai.types.CompletionUsage(
        completion_tokens=5, prompt_tokens=6, total_tokens=11)

133
134
135
136
137
138
139
140
141
142
    # test using token IDs
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=[0, 0, 0, 0, 0],
        max_tokens=5,
        temperature=0.0,
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5

143

144
145
146
147
148
149
150
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(server, client: openai.AsyncOpenAI,
                                   model_name: str):
151
152
153
154
155
156
157
158
159
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
160
161
162
163
164
    chat_completion = await client.chat.completions.create(model=model_name,
                                                           messages=messages,
                                                           max_tokens=10,
                                                           logprobs=True,
                                                           top_logprobs=10)
165
166
167
168
    assert chat_completion.id is not None
    assert chat_completion.choices is not None and len(
        chat_completion.choices) == 1
    assert chat_completion.choices[0].message is not None
169
170
171
    assert chat_completion.choices[0].logprobs is not None
    assert chat_completion.choices[0].logprobs.top_logprobs is not None
    assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 10
    assert message.role == "assistant"
    messages.append({"role": "assistant", "content": message.content})

    # test multi-turn dialogue
    messages.append({"role": "user", "content": "express your result in json"})
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
    )
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 0


188
189
190
191
192
193
194
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(server, client: openai.AsyncOpenAI,
                                    model_name: str):
195
196
197
    prompt = "What is an LLM?"

    single_completion = await client.completions.create(
198
        model=model_name,
199
200
201
202
203
204
205
        prompt=prompt,
        max_tokens=5,
        temperature=0.0,
    )
    single_output = single_completion.choices[0].text
    single_usage = single_completion.usage

206
207
208
209
210
    stream = await client.completions.create(model=model_name,
                                             prompt=prompt,
                                             max_tokens=5,
                                             temperature=0.0,
                                             stream=True)
211
212
213
214
215
216
217
218
    chunks = []
    async for chunk in stream:
        chunks.append(chunk.choices[0].text)
    assert chunk.choices[0].finish_reason == "length"
    assert chunk.usage == single_usage
    assert "".join(chunks) == single_output


219
220
221
222
223
224
225
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(server, client: openai.AsyncOpenAI,
                              model_name: str):
226
227
228
229
230
231
232
233
234
235
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(
236
        model=model_name,
237
238
239
240
241
242
243
244
245
        messages=messages,
        max_tokens=10,
        temperature=0.0,
    )
    output = chat_completion.choices[0].message.content
    stop_reason = chat_completion.choices[0].finish_reason

    # test streaming
    stream = await client.chat.completions.create(
246
        model=model_name,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        messages=messages,
        max_tokens=10,
        temperature=0.0,
        stream=True,
    )
    chunks = []
    async for chunk in stream:
        delta = chunk.choices[0].delta
        if delta.role:
            assert delta.role == "assistant"
        if delta.content:
            chunks.append(delta.content)
    assert chunk.choices[0].finish_reason == stop_reason
    assert "".join(chunks) == output


263
264
265
266
267
268
269
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(server, client: openai.AsyncOpenAI,
                                 model_name: str):
270
271
    # test simple list
    batch = await client.completions.create(
272
        model=model_name,
273
274
275
276
277
278
279
280
281
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
    )
    assert len(batch.choices) == 2
    assert batch.choices[0].text == batch.choices[1].text

    # test n = 2
    batch = await client.completions.create(
282
        model=model_name,
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        prompt=["Hello, my name is", "Hello, my name is"],
        n=2,
        max_tokens=5,
        temperature=0.0,
        extra_body=dict(
            # NOTE: this has to be true for n > 1 in vLLM, but not necessary for official client.
            use_beam_search=True),
    )
    assert len(batch.choices) == 4
    assert batch.choices[0].text != batch.choices[
        1].text, "beam search should be different"
    assert batch.choices[0].text == batch.choices[
        2].text, "two copies of the same prompt should be the same"
    assert batch.choices[1].text == batch.choices[
        3].text, "two copies of the same prompt should be the same"

    # test streaming
    batch = await client.completions.create(
301
        model=model_name,
302
303
304
305
306
307
308
309
310
311
312
313
314
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
        stream=True,
    )
    texts = [""] * 2
    async for chunk in batch:
        assert len(chunk.choices) == 1
        choice = chunk.choices[0]
        texts[choice.index] += choice.text
    assert texts[0] == texts[1]


315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
async def test_logits_bias(server, client: openai.AsyncOpenAI):
    prompt = "Hello, my name is"
    max_tokens = 5
    tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)

    # Test exclusive selection
    token_id = 1000
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token_id): 100},
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
                                add_special_tokens=False)["input_ids"]
    assert all([
        response == expected
        for response, expected in zip(response_tokens, expected_tokens)
    ])

    # Test ban
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
    )
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    first_response = completion.choices[0].text
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token): -100
                    for token in response_tokens},
    )
    assert first_response != completion.choices[0].text


361
362
if __name__ == "__main__":
    pytest.main([__file__])