attention_kernels.cu 22.3 KB
Newer Older
1
2
/*
 * Adapted from https://github.com/NVIDIA/FasterTransformer/blob/release/v5.3_tag/src/fastertransformer/kernels/decoder_masked_multihead_attention/decoder_masked_multihead_attention_template.hpp
Woosuk Kwon's avatar
Woosuk Kwon committed
3
 * Copyright (c) 2023, The vLLM team.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
Woosuk Kwon's avatar
Woosuk Kwon committed
18
19
20
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

Woosuk Kwon's avatar
Woosuk Kwon committed
21
#include "attention_dtypes.h"
Woosuk Kwon's avatar
Woosuk Kwon committed
22
23
24
25
26
27
28
29
#include "attention_utils.cuh"

#include <algorithm>

#define WARP_SIZE 32
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))

Woosuk Kwon's avatar
Woosuk Kwon committed
30
namespace vllm {
Woosuk Kwon's avatar
Woosuk Kwon committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

// Utility function for attention softmax.
template<int NUM_WARPS>
inline __device__ float block_sum(float* red_smem, float sum) {
  // Decompose the thread index into warp / lane.
  int warp = threadIdx.x / WARP_SIZE;
  int lane = threadIdx.x % WARP_SIZE;

  // Compute the sum per warp.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= 1; mask /= 2) {
    sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
  }

  // Warp leaders store the data to shared memory.
  if (lane == 0) {
    red_smem[warp] = sum;
  }

  // Make sure the data is in shared memory.
  __syncthreads();

  // The warps compute the final sums.
  if (lane < NUM_WARPS) {
    sum = red_smem[lane];
  }

  // Parallel reduction inside the warp.
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
    sum += __shfl_xor_sync(uint32_t(-1), sum, mask);
  }

  // Broadcast to other threads.
  return __shfl_sync(uint32_t(-1), sum, 0);
}

// Grid: (num_heads, num_seqs).
template<
  typename scalar_t,
  int HEAD_SIZE,
  int BLOCK_SIZE,
  int NUM_THREADS>
__global__ void single_query_cached_kv_attention_kernel(
  scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
Zhuohan Li's avatar
Zhuohan Li committed
77
78
79
  const scalar_t* __restrict__ k_cache,   // [num_blocks, num_kv_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ v_cache,   // [num_blocks, num_kv_heads, head_size, block_size]
  const int* __restrict__ head_mapping,   // [num_heads]
Woosuk Kwon's avatar
Woosuk Kwon committed
80
81
82
83
  const float scale,
  const int* __restrict__ block_tables,   // [num_seqs, max_num_blocks_per_seq]
  const int* __restrict__ context_lens,   // [num_seqs]
  const int max_num_blocks_per_seq,
Woosuk Kwon's avatar
Woosuk Kwon committed
84
  const float* __restrict__ alibi_slopes, // [num_heads]
Zhuohan Li's avatar
Zhuohan Li committed
85
86
87
  const int q_stride,
  const int kv_block_stride,
  const int kv_head_stride) {
Woosuk Kwon's avatar
Woosuk Kwon committed
88
  constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
89
90
  constexpr int NUM_THREAD_GROUPS = NUM_THREADS / THREAD_GROUP_SIZE; // Note: This assumes THREAD_GROUP_SIZE divides NUM_THREADS
  assert(NUM_THREADS % THREAD_GROUP_SIZE == 0);
Woosuk Kwon's avatar
Woosuk Kwon committed
91
92
93
94
95
96
97
98
  constexpr int NUM_TOKENS_PER_THREAD_GROUP = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  const int thread_idx = threadIdx.x;
  const int warp_idx = thread_idx / WARP_SIZE;
  const int lane = thread_idx % WARP_SIZE;

  const int head_idx = blockIdx.x;
  const int num_heads = gridDim.x;
Zhuohan Li's avatar
Zhuohan Li committed
99
  const int kv_head_idx = head_mapping[head_idx];
Woosuk Kwon's avatar
Woosuk Kwon committed
100
  const int seq_idx = blockIdx.y;
Woosuk Kwon's avatar
Woosuk Kwon committed
101
  const float alibi_slope = alibi_slopes == nullptr ? 0.f : alibi_slopes[head_idx];
Woosuk Kwon's avatar
Woosuk Kwon committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

  // A vector type to store a part of a key or a query.
  // The vector size is configured in such a way that the threads in a thread group
  // fetch or compute 16 bytes at a time.
  // For example, if the size of a thread group is 4 and the data type is half,
  // then the vector size is 16 / (4 * sizeof(half)) == 2.
  constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
  using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
  using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;

  constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
  constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;

  const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
  const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;

  // Load the query to registers.
  // Each thread in a thread group has a different part of the query.
  // For example, if the the thread group size is 4, then the first thread in the group
  // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
  // th vectors of the query, and so on.
  // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
  const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
125
  __shared__ Q_vec q_vecs[THREAD_GROUP_SIZE][NUM_VECS_PER_THREAD];
Woosuk Kwon's avatar
Woosuk Kwon committed
126
#pragma unroll
127
  for (int i = thread_group_idx; i < NUM_VECS_PER_THREAD; i += NUM_THREAD_GROUPS) {
Woosuk Kwon's avatar
Woosuk Kwon committed
128
    const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
129
    q_vecs[thread_group_offset][i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
Woosuk Kwon's avatar
Woosuk Kwon committed
130
  }
131
  __syncthreads(); // TODO(naed90): possible speedup if this is replaced with a memory wall right before we use q_vecs
Woosuk Kwon's avatar
Woosuk Kwon committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

  // Memory planning.
  extern __shared__ char shared_mem[];
  // NOTE(woosuk): We use FP32 for the softmax logits for better accuracy.
  float* logits = reinterpret_cast<float*>(shared_mem);
  // Workspace for reduction.
  __shared__ float red_smem[2 * NUM_WARPS];

  // x == THREAD_GROUP_SIZE * VEC_SIZE
  // Each thread group fetches x elements from the key at a time.
  constexpr int x = 16 / sizeof(scalar_t);
  float qk_max = -FLT_MAX;

  const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
  const int context_len = context_lens[seq_idx];
  const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;

  // Iterate over the key blocks.
  // Each warp fetches a block of keys for each iteration.
  // Each thread group in a warp fetches a key from the block, and computes
  // dot product with the query.
  for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
    const int physical_block_number = block_table[block_idx];

    // Load a key to registers.
    // Each thread in a thread group has a different part of the key.
    // For example, if the the thread group size is 4, then the first thread in the group
    // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
    // vectors of the key, and so on.
    for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
      const int physical_block_offset = (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
      const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
      K_vec k_vecs[NUM_VECS_PER_THREAD];

#pragma unroll
      for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
Zhuohan Li's avatar
Zhuohan Li committed
168
169
        const scalar_t* k_ptr = k_cache + physical_block_number * kv_block_stride
                                        + kv_head_idx * kv_head_stride
Woosuk Kwon's avatar
Woosuk Kwon committed
170
171
172
173
174
175
176
177
178
                                        + physical_block_offset * x;
        const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
        const int offset1 = (vec_idx * VEC_SIZE) / x;
        const int offset2 = (vec_idx * VEC_SIZE) % x;
        k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
      }

      // Compute dot product.
      // This includes a reduction across the threads in the same thread group.
179
      float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs[thread_group_offset], k_vecs);
Woosuk Kwon's avatar
Woosuk Kwon committed
180
      // Add the ALiBi bias if slopes are given.
181
      qk += (alibi_slope != 0) ? alibi_slope * (token_idx - context_len + 1) : 0;
Woosuk Kwon's avatar
Woosuk Kwon committed
182

Woosuk Kwon's avatar
Woosuk Kwon committed
183
184
185
      if (thread_group_offset == 0) {
        // Store the partial reductions to shared memory.
        // NOTE(woosuk): It is required to zero out the masked logits.
Woosuk Kwon's avatar
Woosuk Kwon committed
186
        const bool mask = token_idx >= context_len;
Woosuk Kwon's avatar
Woosuk Kwon committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
        logits[token_idx] = mask ? 0.f : qk;
        // Update the max value.
        qk_max = mask ? qk_max : fmaxf(qk_max, qk);
      }
    }
  }

  // Perform reduction across the threads in the same warp to get the
  // max qk value for each "warp" (not across the thread block yet).
  // The 0-th thread of each thread group already has its max qk value.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
    qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
  }
  if (lane == 0) {
    red_smem[warp_idx] = qk_max;
  }
  __syncthreads();

  // TODO(woosuk): Refactor this part.
  // Get the max qk value for the sequence.
  qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
    qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
  }
  // Broadcast the max qk value to all threads.
  qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);

  // Get the sum of the exp values.
  float exp_sum = 0.f;
  for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
    float val = __expf(logits[i] - qk_max);
    logits[i] = val;
    exp_sum += val;
  }
  exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);

  // Compute softmax.
  const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
  for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
    logits[i] *= inv_sum;
  }
  __syncthreads();

  // Each thread will fetch 16 bytes from the value cache at a time.
  constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
  using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
  using L_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
  using Float_L_vec = typename FloatVec<L_vec>::Type;

  constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
  constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
  constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;

  // NOTE(woosuk): We use FP32 for the accumulator for better accuracy.
  float accs[NUM_ROWS_PER_THREAD];
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    accs[i] = 0.f;
  }

249
250
  scalar_t zero_value;
  zero(zero_value);
Woosuk Kwon's avatar
Woosuk Kwon committed
251
252
253
254
255
256
257
  for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
    const int physical_block_number = block_table[block_idx];
    const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
    const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
    L_vec logits_vec;
    from_float(logits_vec, *reinterpret_cast<Float_L_vec*>(logits + token_idx));

Zhuohan Li's avatar
Zhuohan Li committed
258
259
    const scalar_t* v_ptr = v_cache + physical_block_number * kv_block_stride
                                    + kv_head_idx * kv_head_stride;
Woosuk Kwon's avatar
Woosuk Kwon committed
260
261
262
263
264
265
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE) {
        const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
        V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
266
267
268
269
270
271
272
273
274
275
        if (block_idx == num_blocks - 1) {
          // NOTE(woosuk): When v_vec contains the tokens that are out of the context,
          // we should explicitly zero out the values since they may contain NaNs.
          // See https://github.com/vllm-project/vllm/issues/641#issuecomment-1682544472
          scalar_t* v_vec_ptr = reinterpret_cast<scalar_t*>(&v_vec);
#pragma unroll
          for (int j = 0; j <= V_VEC_SIZE; j++) {
            v_vec_ptr[j] = token_idx + j < context_len ? v_vec_ptr[j] : zero_value;
          }
        }
Woosuk Kwon's avatar
Woosuk Kwon committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        accs[i] += dot(logits_vec, v_vec);
      }
    }
  }

  // Perform reduction within each warp.
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    float acc = accs[i];
#pragma unroll
    for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
      acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
    }
    accs[i] = acc;
  }

  // NOTE(woosuk): A barrier is required because the shared memory space for logits
  // is reused for the output.
  __syncthreads();

  // Perform reduction across warps.
  float* out_smem = reinterpret_cast<float*>(shared_mem);
#pragma unroll
  for (int i = NUM_WARPS; i > 1; i /= 2) {
    int mid = i / 2;
    // Upper warps write to shared memory.
    if (warp_idx >= mid && warp_idx < i) {
      float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          dst[row_idx] = accs[i];
        }
      }
    }
    __syncthreads();

    // Lower warps update the output.
    if (warp_idx < mid) {
      const float* src = &out_smem[warp_idx * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          accs[i] += src[row_idx];
        }
      }
    }
    __syncthreads();
  }

  // Write the final output.
  if (warp_idx == 0) {
    scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
        from_float(*(out_ptr + row_idx), accs[i]);
      }
    }
  }
}

Woosuk Kwon's avatar
Woosuk Kwon committed
341
} // namespace vllm
Woosuk Kwon's avatar
Woosuk Kwon committed
342
343

#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS)                        \
344
345
346
  cudaFuncSetAttribute(                                                                       \
      vllm::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>,   \
      cudaFuncAttributeMaxDynamicSharedMemorySize, shared_mem_size);                          \
Woosuk Kwon's avatar
Woosuk Kwon committed
347
  vllm::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>        \
Woosuk Kwon's avatar
Woosuk Kwon committed
348
349
350
351
352
  <<<grid, block, shared_mem_size, stream>>>(                                                 \
    out_ptr,                                                                                  \
    query_ptr,                                                                                \
    key_cache_ptr,                                                                            \
    value_cache_ptr,                                                                          \
Zhuohan Li's avatar
Zhuohan Li committed
353
    head_mapping_ptr,                                                                         \
Woosuk Kwon's avatar
Woosuk Kwon committed
354
355
356
357
    scale,                                                                                    \
    block_tables_ptr,                                                                         \
    context_lens_ptr,                                                                         \
    max_num_blocks_per_seq,                                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
358
    alibi_slopes_ptr,                                                                         \
Zhuohan Li's avatar
Zhuohan Li committed
359
360
361
    q_stride,                                                                                 \
    kv_block_stride,                                                                          \
    kv_head_stride);
Woosuk Kwon's avatar
Woosuk Kwon committed
362
363
364
365
366
367
368
369
370
371
372

// TODO(woosuk): Tune NUM_THREADS.
template<
  typename T,
  int BLOCK_SIZE,
  int NUM_THREADS = 128>
void single_query_cached_kv_attention_launcher(
  torch::Tensor& out,
  torch::Tensor& query,
  torch::Tensor& key_cache,
  torch::Tensor& value_cache,
Zhuohan Li's avatar
Zhuohan Li committed
373
  torch::Tensor& head_mapping,
Woosuk Kwon's avatar
Woosuk Kwon committed
374
375
376
  float scale,
  torch::Tensor& block_tables,
  torch::Tensor& context_lens,
Woosuk Kwon's avatar
Woosuk Kwon committed
377
378
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
Woosuk Kwon's avatar
Woosuk Kwon committed
379
380
381
382
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
Zhuohan Li's avatar
Zhuohan Li committed
383
384
385
  int q_stride = query.stride(0);
  int kv_block_stride = key_cache.stride(0);
  int kv_head_stride = key_cache.stride(1);
Woosuk Kwon's avatar
Woosuk Kwon committed
386
387
388
389

  int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
  assert(head_size % thread_group_size == 0);

Woosuk Kwon's avatar
Woosuk Kwon committed
390
391
392
393
394
  // NOTE: alibi_slopes is optional.
  const float* alibi_slopes_ptr = alibi_slopes ?
    reinterpret_cast<const float*>(alibi_slopes.value().data_ptr())
    : nullptr;

Woosuk Kwon's avatar
Woosuk Kwon committed
395
396
397
398
  T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
  T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
  T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
  T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
Zhuohan Li's avatar
Zhuohan Li committed
399
  int* head_mapping_ptr = reinterpret_cast<int*>(head_mapping.data_ptr());
Woosuk Kwon's avatar
Woosuk Kwon committed
400
401
402
403
404
  int* block_tables_ptr = block_tables.data_ptr<int>();
  int* context_lens_ptr = context_lens.data_ptr<int>();

  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
405
  int logits_size = padded_max_context_len * sizeof(float);
Woosuk Kwon's avatar
Woosuk Kwon committed
406
  int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
407
408
  // Python-side check in vllm.worker.worker._check_if_can_support_max_seq_len
  // Keep that in sync with the logic here!
Woosuk Kwon's avatar
Woosuk Kwon committed
409
410
411
412
413
414
  int shared_mem_size = std::max(logits_size, outputs_size);

  dim3 grid(num_heads, num_seqs);
  dim3 block(NUM_THREADS);
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  switch (head_size) {
Woosuk Kwon's avatar
Woosuk Kwon committed
415
    // NOTE(woosuk): To reduce the compilation time, we omitted head sizes
416
    // 32, 160, 192.
Woosuk Kwon's avatar
Woosuk Kwon committed
417
418
419
    // case 32:
    //   LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
    //   break;
Woosuk Kwon's avatar
Woosuk Kwon committed
420
421
422
423
424
425
426
427
428
    case 64:
      LAUNCH_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
      break;
    case 80:
      LAUNCH_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
      break;
    case 96:
      LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
      break;
429
430
431
    case 112:
      LAUNCH_ATTENTION_KERNEL(T, 112, BLOCK_SIZE, NUM_THREADS);
      break;
Woosuk Kwon's avatar
Woosuk Kwon committed
432
433
434
    case 128:
      LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
      break;
Woosuk Kwon's avatar
Woosuk Kwon committed
435
436
437
438
439
440
    // case 160:
    //   LAUNCH_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
    //   break;
    // case 192:
    //   LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
    //   break;
441
442
443
    case 256:
      LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
      break;
Woosuk Kwon's avatar
Woosuk Kwon committed
444
445
446
447
448
449
450
451
452
453
454
455
    default:
      TORCH_CHECK(false, "Unsupported head size: ", head_size);
      break;
  }
}

#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE)                         \
  single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>(         \
    out,                                                            \
    query,                                                          \
    key_cache,                                                      \
    value_cache,                                                    \
Zhuohan Li's avatar
Zhuohan Li committed
456
    head_mapping,                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
457
458
459
    scale,                                                          \
    block_tables,                                                   \
    context_lens,                                                   \
Woosuk Kwon's avatar
Woosuk Kwon committed
460
461
    max_context_len,                                                \
    alibi_slopes);
Woosuk Kwon's avatar
Woosuk Kwon committed
462

Woosuk Kwon's avatar
Woosuk Kwon committed
463
464
// NOTE(woosuk): To reduce the compilation time, we omitted block sizes
// 1, 2, 4, 64, 128, 256.
Woosuk Kwon's avatar
Woosuk Kwon committed
465
466
#define CALL_KERNEL_LAUNCHER_BLOCK_SIZE(T)                          \
  switch (block_size) {                                             \
Woosuk Kwon's avatar
Woosuk Kwon committed
467
468
469
470
471
472
473
474
475
    /* case 1:                         */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 1);   */                           \
    /*   break;                        */                           \
    /* case 2:                         */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 2);   */                           \
    /*   break;                        */                           \
    /* case 4:                         */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 4);   */                           \
    /*   break;                        */                           \
Woosuk Kwon's avatar
Woosuk Kwon committed
476
477
478
479
480
481
482
483
484
    case 8:                                                         \
      CALL_KERNEL_LAUNCHER(T, 8);                                   \
      break;                                                        \
    case 16:                                                        \
      CALL_KERNEL_LAUNCHER(T, 16);                                  \
      break;                                                        \
    case 32:                                                        \
      CALL_KERNEL_LAUNCHER(T, 32);                                  \
      break;                                                        \
Woosuk Kwon's avatar
Woosuk Kwon committed
485
486
487
488
489
490
491
492
493
    /* case 64:                        */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 64);  */                           \
    /*   break;                        */                           \
    /* case 128:                       */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 128); */                           \
    /*   break;                        */                           \
    /* case 256:                       */                           \
    /*   CALL_KERNEL_LAUNCHER(T, 256); */                           \
    /*   break;                        */                           \
Woosuk Kwon's avatar
Woosuk Kwon committed
494
495
496
497
498
499
500
501
502
503
    default:                                                        \
      TORCH_CHECK(false, "Unsupported block size: ", block_size);   \
      break;                                                        \
  }

void single_query_cached_kv_attention(
  torch::Tensor& out,             // [num_seqs, num_heads, head_size]
  torch::Tensor& query,           // [num_seqs, num_heads, head_size]
  torch::Tensor& key_cache,       // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,     // [num_blocks, num_heads, head_size, block_size]
Zhuohan Li's avatar
Zhuohan Li committed
504
  torch::Tensor& head_mapping,    // [num_heads]
Woosuk Kwon's avatar
Woosuk Kwon committed
505
506
507
508
  float scale,
  torch::Tensor& block_tables,    // [num_seqs, max_num_blocks_per_seq]
  torch::Tensor& context_lens,    // [num_seqs]
  int block_size,
Woosuk Kwon's avatar
Woosuk Kwon committed
509
510
  int max_context_len,
  const c10::optional<torch::Tensor>& alibi_slopes) {
Woosuk Kwon's avatar
Woosuk Kwon committed
511
512
513
  if (query.dtype() == at::ScalarType::Float) {
    CALL_KERNEL_LAUNCHER_BLOCK_SIZE(float);
  } else if (query.dtype() == at::ScalarType::Half) {
Woosuk Kwon's avatar
Woosuk Kwon committed
514
    CALL_KERNEL_LAUNCHER_BLOCK_SIZE(uint16_t);
Woosuk Kwon's avatar
Woosuk Kwon committed
515
516
  } else if (query.dtype() == at::ScalarType::BFloat16) {
    CALL_KERNEL_LAUNCHER_BLOCK_SIZE(__nv_bfloat16);
Woosuk Kwon's avatar
Woosuk Kwon committed
517
518
519
520
521
522
523
524
  } else {
    TORCH_CHECK(false, "Unsupported data type: ", query.dtype());
  }
}

#undef WARP_SIZE
#undef MAX
#undef MIN