"torchvision/csrc/ops/deform_conv2d.cpp" did not exist on "8520f0bea4a09e60a217fe3a8cf24b8f733ec16c"
memory_analyzer.py 15 KB
Newer Older
1
2
3
4
5
import torch
from transformers import AutoConfig

from cacheflow.models.utils import get_dtype_size

Woosuk Kwon's avatar
Woosuk Kwon committed
6
_GiB = 1 << 30
7
8
9
10
11
12
13
14
15
16
17


class CacheFlowMemoryAnalyzer:

    def get_max_num_gpu_blocks(
        self,
        max_num_batched_tokens: int,
        memory_utilization: float,
    ) -> int:
        raise NotImplementedError()

Woosuk Kwon's avatar
Woosuk Kwon committed
18
19
20
21
22
23
    def get_workspace_size(self) -> int:
        return 1 * _GiB

    def get_cache_block_size(self) -> int:
        raise NotImplementedError()

24
25
    def get_max_num_cpu_blocks(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
26
        swap_space: int,
27
    ) -> int:
Woosuk Kwon's avatar
Woosuk Kwon committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        swap_space = swap_space * _GiB
        cpu_memory = self.cpu_memory
        if swap_space > 0.8 * cpu_memory:
            raise ValueError(f'The swap space ({swap_space / _GiB:.2f} GiB) '
                             'takes more than 80% of the available memory '
                             f'({cpu_memory / _GiB:.2f} GiB).'
                             'Please check the swap space size.')
        if swap_space > 0.5 * cpu_memory:
            print(f'WARNING: The swap space ({swap_space / _GiB:.2f} GiB) '
                  'takes more than 50% of the available memory '
                  f'({cpu_memory / _GiB:.2f} GiB).'
                  'This may slow the system performance.')
        max_num_blocks = swap_space // self.get_cache_block_size()
        return max_num_blocks
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    def get_param_size(self) -> int:
        raise NotImplementedError()

    def get_max_act_size(self, max_num_batched_tokens: int) -> int:
        raise NotImplementedError()

    def get_cache_block_size(self) -> int:
        key_cache_block = self.block_size * self.hidden_size // self.tensor_parallel_size
        value_cache_block = key_cache_block
        total = self.num_layers * (key_cache_block + value_cache_block)
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * total

    def get_max_num_gpu_blocks(
        self,
        max_num_batched_tokens: int,
        memory_utilization: float = 0.95,
    ) -> int:
        # NOTE(woosuk): This assumes that the machine has homogeneous GPUs.
        usable_memory = int(memory_utilization * self.gpu_memory)

        param_size = self.get_param_size()
        act_size = self.get_max_act_size(max_num_batched_tokens)
        workspace_size = self.get_workspace_size()

        max_cache_size = usable_memory - (param_size + act_size + workspace_size)
        if max_cache_size <= 0:
            raise RuntimeError('Not enough GPU memory.')
        max_num_blocks = max_cache_size // self.get_cache_block_size()
        return max_num_blocks

74

Woosuk Kwon's avatar
Woosuk Kwon committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
class GPT2MemoryAnalyzer(CacheFlowMemoryAnalyzer):

    def __init__(
        self,
        model_name: str,
        block_size: int,
        dtype: torch.dtype,
        gpu_memory: int,
        cpu_memory: int,
        tensor_parallel_size: int,
    ) -> None:
        self.model_name = model_name
        self.block_size = block_size
        self.dtype = dtype
        self.gpu_memory = gpu_memory
        self.cpu_memory = cpu_memory
        self.tensor_parallel_size = tensor_parallel_size

        config = AutoConfig.from_pretrained(model_name)
        self.num_layers = config.num_hidden_layers
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // self.num_heads
        self.ffn_size = config.n_inner if config.n_inner is not None else 4 * self.hidden_size
        self.vocab_size = config.vocab_size
        self.max_position = config.max_position_embeddings

    def get_param_size(self) -> int:
        word_embedding = self.vocab_size * self.hidden_size // self.tensor_parallel_size
        position_embedding = self.max_position * self.hidden_size

        ln1 = 2 * self.hidden_size
        q = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        k = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        v = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        out = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        mha = ln1 + q + k + v + out

        ln2 = 2 * self.hidden_size
        ffn1 = self.hidden_size * self.ffn_size // self.tensor_parallel_size + self.ffn_size
        ffn2 = self.ffn_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        ffn = ln2 + ffn1 + ffn2

        total = (word_embedding + position_embedding +
                 self.num_layers * (mha + ffn))
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * total

    def get_max_act_size(
        self,
        max_num_batched_tokens: int,
    ) -> int:
        # NOTE: We approxmiately calculate the maximum activation size by
        # estimating
        # 1) the maximum activation tensor size during inference
        # 2) the residual tensor size during inference
        # Here, we assume that FlashAttention is used and
        # thus the attention maps are never materialized in GPU DRAM.
        residual = max_num_batched_tokens * self.hidden_size
        qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
        ffn = max_num_batched_tokens * self.ffn_size // self.tensor_parallel_size
        # Double the activation size for input and output.
        max_act = 2 * (max(qkv, ffn) + residual)
        # Size of output logits.
        output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
        max_act = max(max_act, output_logits)
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * max_act


145
146
147
148
149
150
151
class OPTMemoryAnalyzer(CacheFlowMemoryAnalyzer):

    def __init__(
        self,
        model_name: str,
        block_size: int,
        dtype: torch.dtype,
152
153
        gpu_memory: int,
        cpu_memory: int,
Zhuohan Li's avatar
Zhuohan Li committed
154
        tensor_parallel_size: int,
155
156
157
158
    ) -> None:
        self.model_name = model_name
        self.block_size = block_size
        self.dtype = dtype
159
160
        self.gpu_memory = gpu_memory
        self.cpu_memory = cpu_memory
Zhuohan Li's avatar
Zhuohan Li committed
161
        self.tensor_parallel_size = tensor_parallel_size
162
163
164
165
166
167
168
169
170
171
172

        config = AutoConfig.from_pretrained(model_name)
        self.num_layers = config.num_hidden_layers
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // self.num_heads
        self.ffn_size = config.ffn_dim
        self.embedding_size = config.word_embed_proj_dim
        self.vocab_size = config.vocab_size
        self.max_position = config.max_position_embeddings

173
    def get_param_size(self) -> int:
Zhuohan Li's avatar
Zhuohan Li committed
174
        word_embedding = self.vocab_size * self.embedding_size // self.tensor_parallel_size
Woosuk Kwon's avatar
Woosuk Kwon committed
175
        if self.embedding_size != self.hidden_size:
176
            # Project in/out.
Woosuk Kwon's avatar
Woosuk Kwon committed
177
            word_embedding += 2 * self.embedding_size * self.hidden_size
178
179
180
        position_embedding = self.max_position * self.hidden_size

        ln1 = 2 * self.hidden_size
Zhuohan Li's avatar
Zhuohan Li committed
181
182
183
184
        q = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        k = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        v = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        out = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
185
186
187
        mha = ln1 + q + k + v + out

        ln2 = 2 * self.hidden_size
Zhuohan Li's avatar
Zhuohan Li committed
188
189
        ffn1 = self.hidden_size * self.ffn_size // self.tensor_parallel_size + self.ffn_size
        ffn2 = self.ffn_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
190
191
        ffn = ln2 + ffn1 + ffn2

Zhuohan Li's avatar
Zhuohan Li committed
192
        total = (word_embedding + position_embedding +
193
194
195
196
                 self.num_layers * (mha + ffn))
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * total

197
    def get_max_act_size(
198
199
200
201
        self,
        max_num_batched_tokens: int,
    ) -> int:
        # NOTE: We approxmiately calculate the maximum activation size by
Zhuohan Li's avatar
Zhuohan Li committed
202
203
204
        # estimating
        # 1) the maximum activation tensor size during inference
        # 2) the residual tensor size during inference
205
206
        # Here, we assume that we use memory-efficient attention which
        # does not materialize the attention maps in GPU DRAM.
Zhuohan Li's avatar
Zhuohan Li committed
207
208
209
210
211
        residual = max_num_batched_tokens * self.hidden_size
        qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
        ffn = max_num_batched_tokens * self.ffn_size // self.tensor_parallel_size
        # Double the activation size for input and output.
        max_act = 2 * (max(qkv, ffn) + residual)
Woosuk Kwon's avatar
Woosuk Kwon committed
212
213
214
        # Size of output logits.
        output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
        max_act = max(max_act, output_logits)
215
216
217
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * max_act

Woosuk Kwon's avatar
Woosuk Kwon committed
218
219
220
221

class LlamaMemoryAnalyzer(CacheFlowMemoryAnalyzer):

    def __init__(
222
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        model_name: str,
        block_size: int,
        dtype: torch.dtype,
        gpu_memory: int,
        cpu_memory: int,
        tensor_parallel_size: int,
    ) -> None:
        self.model_name = model_name
        self.block_size = block_size
        self.dtype = dtype
        self.gpu_memory = gpu_memory
        self.cpu_memory = cpu_memory
        self.tensor_parallel_size = tensor_parallel_size

        config = AutoConfig.from_pretrained(model_name)
        self.num_layers = config.num_hidden_layers
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // self.num_heads
        self.ffn_size = config.intermediate_size
        self.vocab_size = config.vocab_size
244
        self.max_position = 8192
Woosuk Kwon's avatar
Woosuk Kwon committed
245

246
247
    def get_param_size(self) -> int:
        # NOTE: LLaMA does not tie the two embeddings.
Woosuk Kwon's avatar
Woosuk Kwon committed
248
        word_embedding = self.vocab_size * self.hidden_size // self.tensor_parallel_size
249
        lm_head = self.vocab_size * self.hidden_size // self.tensor_parallel_size
Woosuk Kwon's avatar
Woosuk Kwon committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

        # NOTE: LLaMA does not have bias terms.
        ln1 = self.hidden_size
        q = self.hidden_size * self.hidden_size // self.tensor_parallel_size
        k = self.hidden_size * self.hidden_size // self.tensor_parallel_size
        v = self.hidden_size * self.hidden_size // self.tensor_parallel_size
        out = self.hidden_size * self.hidden_size // self.tensor_parallel_size
        # Rotary embedding.
        # TODO(woosuk): Share the rotary embedding between layers.
        rot = self.max_position * self.head_size
        mha = ln1 + q + k + v + out + rot

        ln2 = self.hidden_size
        gate = self.hidden_size * self.ffn_size // self.tensor_parallel_size
        down = self.ffn_size * self.hidden_size // self.tensor_parallel_size
        up = self.hidden_size * self.ffn_size // self.tensor_parallel_size
        ffn = ln2 + gate + down + up

268
        total = word_embedding + self.num_layers * (mha + ffn) + lm_head
Woosuk Kwon's avatar
Woosuk Kwon committed
269
270
271
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * total

272
    def get_max_act_size(
Woosuk Kwon's avatar
Woosuk Kwon committed
273
274
        self,
        max_num_batched_tokens: int,
275
    ) -> int:
Woosuk Kwon's avatar
Woosuk Kwon committed
276
277
278
279
        # NOTE: We approxmiately calculate the maximum activation size by
        # estimating
        # 1) the maximum activation tensor size during inference
        # 2) the residual tensor size during inference
280
281
        # Here, we assume that we use memory-efficient attention which
        # does not materialize the attention maps in GPU DRAM.
Woosuk Kwon's avatar
Woosuk Kwon committed
282
283
284
285
286
287
288
289
290
291
292
        residual = max_num_batched_tokens * self.hidden_size
        qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
        ffn = 2 * (max_num_batched_tokens * self.ffn_size) // self.tensor_parallel_size
        # Double the activation size for input and output.
        max_act = 2 * (max(qkv, ffn) + residual)
        # Size of output logits.
        output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
        max_act = max(max_act, output_logits)
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * max_act

293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

class GPTNeoXMemoryAnalyzer(CacheFlowMemoryAnalyzer):

    def __init__(
        self,
        model_name: str,
        block_size: int,
        dtype: torch.dtype,
        gpu_memory: int,
        cpu_memory: int,
        tensor_parallel_size: int,
    ) -> None:
        self.model_name = model_name
        self.block_size = block_size
        self.dtype = dtype
        self.gpu_memory = gpu_memory
        self.cpu_memory = cpu_memory
        self.tensor_parallel_size = tensor_parallel_size

        config = AutoConfig.from_pretrained(model_name)
        self.num_layers = config.num_hidden_layers
        self.hidden_size = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_size = config.hidden_size // self.num_heads
        self.ffn_size = config.intermediate_size
        self.vocab_size = config.vocab_size
        self.max_position = 8192
        self.tie_word_embeddings = config.tie_word_embeddings

    def get_param_size(self) -> int:
        word_embedding = self.vocab_size * self.hidden_size // self.tensor_parallel_size
        if self.tie_word_embeddings:
            lm_head = 0
        else:
            lm_head = self.vocab_size * self.hidden_size // self.tensor_parallel_size

        ln1 = 2 * self.hidden_size
        q = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        k = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        v = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        out = self.hidden_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        # Rotary embedding.
        # TODO(woosuk): Share the rotary embedding between layers.
        rot = self.max_position * self.head_size
        mha = ln1 + q + k + v + out + rot

        ln2 = 2 * self.hidden_size
        ffn1 = self.hidden_size * self.ffn_size // self.tensor_parallel_size + self.ffn_size
        ffn2 = self.ffn_size * self.hidden_size // self.tensor_parallel_size + self.hidden_size
        ffn = ln2 + ffn1 + ffn2

        total = word_embedding + self.num_layers * (mha + ffn) + lm_head
Woosuk Kwon's avatar
Woosuk Kwon committed
345
346
347
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * total

348
    def get_max_act_size(
Woosuk Kwon's avatar
Woosuk Kwon committed
349
350
351
        self,
        max_num_batched_tokens: int,
    ) -> int:
352
353
354
355
        # NOTE: We approxmiately calculate the maximum activation size by
        # estimating
        # 1) the maximum activation tensor size during inference
        # 2) the residual tensor size during inference
356
357
        # Here, we assume that we use memory-efficient attention which
        # does not materialize the attention maps in GPU DRAM.
358
359
360
361
362
363
364
365
366
367
        residual = max_num_batched_tokens * self.hidden_size
        qkv = 3 * (max_num_batched_tokens * self.hidden_size) // self.tensor_parallel_size
        ffn = 2 * (max_num_batched_tokens * self.ffn_size) // self.tensor_parallel_size
        # Double the activation size for input and output.
        max_act = 2 * (max(qkv, ffn) + residual)
        # Size of output logits.
        output_logits = 2 * (max_num_batched_tokens * self.vocab_size)
        max_act = max(max_act, output_logits)
        dtype_size = get_dtype_size(self.dtype)
        return dtype_size * max_act